6,562 research outputs found

    Practical Fine-grained Privilege Separation in Multithreaded Applications

    Full text link
    An inherent security limitation with the classic multithreaded programming model is that all the threads share the same address space and, therefore, are implicitly assumed to be mutually trusted. This assumption, however, does not take into consideration of many modern multithreaded applications that involve multiple principals which do not fully trust each other. It remains challenging to retrofit the classic multithreaded programming model so that the security and privilege separation in multi-principal applications can be resolved. This paper proposes ARBITER, a run-time system and a set of security primitives, aimed at fine-grained and data-centric privilege separation in multithreaded applications. While enforcing effective isolation among principals, ARBITER still allows flexible sharing and communication between threads so that the multithreaded programming paradigm can be preserved. To realize controlled sharing in a fine-grained manner, we created a novel abstraction named ARBITER Secure Memory Segment (ASMS) and corresponding OS support. Programmers express security policies by labeling data and principals via ARBITER's API following a unified model. We ported a widely-used, in-memory database application (memcached) to ARBITER system, changing only around 100 LOC. Experiments indicate that only an average runtime overhead of 5.6% is induced to this security enhanced version of application

    Authorizing applications in singularity

    Full text link

    Towards A Verified Complex Protocol Stack in a Production Kernel: Methodology and Demonstration

    Get PDF
    Any useful computer system performs communication and any communication must be parsed before it is computed upon. Given their importance, one might expect parsers to receive a significant share of attention from the security community. This is, however, not the case: bugs in parsers continue to account for a surprising portion of reported and exploited vulnerabilities. In this thesis, I propose a methodology for supporting the development of software that depends on parsers---such as anything connected to the Internet---to safely support any reasonably designed protocol: data structures to describe protocol messages; validation routines that check that data received from the wire conforms to the rules of the protocol; systems that allow a defender to inject arbitrary, crafted input so as to explore the effectiveness of the parser; and systems that allow for the observation of the parser code while it is being explored. Then, I describe principled method of producing parsers that automatically generates the myriad parser-related software from a description of the protocol. This has many significant benefits: it makes implementing parsers simpler, easier, and faster; it reduces the trusted computing base to the description of the protocol and the program that compiles the description to runnable code; and it allows for easier formal verification of the generated code. I demonstrate the merits of the proposed methodology by creating a description of the USB protocol using a domain-specific language (DSL) embedded in Haskell and integrating it with the FreeBSD operating system. Using the industry-standard umap test-suite, I measure the performance and efficacy of the generated parser. I show that it is stable, that it is effective at protecting a system from both accidentally and maliciously malformed input, and that it does not incur unreasonable overhead

    On component-oriented access control in lightweight virtualized server environments

    Get PDF
    2017 Fall.Includes bibliographical references.With the advancements in contemporary multi-core CPU architectures and increase in main memory capacity, it is now possible for a server operating system (OS), such as Linux, to handle a large number of concurrent services on a single server instance. Individual components of such services may run in different isolated runtime environments, such as chrooted jails or related forms of OS-level containers, and may need restricted access to system resources and the ability to share data and coordinate with each other in a regulated and secure manner. In this dissertation we describe our work on the access control framework for policy formulation, management, and enforcement that allows access to OS resources and also permits controlled data sharing and coordination for service components running in disjoint containerized environments within a single Linux OS server instance. The framework consists of two models and the policy formulation is based on the concept of policy classes for ease of administration and enforcement. The policy classes are managed and enforced through a Lightweight Policy Machine for Linux (LPM) that acts as the centralized reference monitor and provides a uniform interface for regulating access to system resources and requesting data and control objects. We present the details of our framework and also discuss the preliminary implementation and evaluation to demonstrate the feasibility of our approach

    Towards Autonomic Service Provisioning Systems

    Full text link
    This paper discusses our experience in building SPIRE, an autonomic system for service provision. The architecture consists of a set of hosted Web Services subject to QoS constraints, and a certain number of servers used to run session-based traffic. Customers pay for having their jobs run, but require in turn certain quality guarantees: there are different SLAs specifying charges for running jobs and penalties for failing to meet promised performance metrics. The system is driven by an utility function, aiming at optimizing the average earned revenue per unit time. Demand and performance statistics are collected, while traffic parameters are estimated in order to make dynamic decisions concerning server allocation and admission control. Different utility functions are introduced and a number of experiments aiming at testing their performance are discussed. Results show that revenues can be dramatically improved by imposing suitable conditions for accepting incoming traffic; the proposed system performs well under different traffic settings, and it successfully adapts to changes in the operating environment.Comment: 11 pages, 9 Figures, http://www.wipo.int/pctdb/en/wo.jsp?WO=201002636

    Enabling Context-Aware Web Services: A Middleware Approach for Ubiquitous Environments

    Get PDF
    In ubiquitous environments, mobile applications should sense and react to environmental changes to provide a better user experience. In order to deal with these concerns, Service-Oriented Architectures (SOA) provide a solution allowing applications to interact with the services available in their surroundings. In particular, context-aware Web Services can adapt their behavior considering the user context. However, the limited resources of mobile devices restrict the adaptation degree. Furthermore, the diverse nature of context information makes difficult its retrieval, processing and distribution. To tackle these challenges, we present the CAPPUCINO platform for executing context-aware Web Services in ubiquitous environments. In particular, in this chapter we focus on the middleware part that is built as an autonomic control loop that deals with dynamic adaptation. In this autonomic loop we use FraSCAti, an implementation of the Service Component Architecture (SCA) specification, as the execution kernel for Web Services. The context distribution is achieved with SPACES, a flexible solution based on REST (REpresentational State Transfer ) principles and benefiting from the COSMOS (COntext entitieS coMpositiOn and Sharing ) context manage- ment framework. The application of our platform is illustrated with a mobile commerce application scenario that combines context-aware Web Services and social networks
    corecore