97,197 research outputs found

    An Efficient and Secure m

    Get PDF
    Recent rapid developments in wireless and mobile IT technologies have led to their application in many real-life areas, such as disasters, home networks, mobile social networks, medical services, industry, schools, and the military. Business/work environments have become wire/wireless, integrated with wireless networks. Although the increase in the use of mobile devices that can use wireless networks increases work efficiency and provides greater convenience, wireless access to networks represents a security threat. Currently, wireless intrusion prevention systems (IPSs) are used to prevent wireless security threats. However, these are not an ideal security measure for businesses that utilize mobile devices because they do not take account of temporal-spatial and role information factors. Therefore, in this paper, an efficient and secure mobile-IPS (m-IPS) is proposed for businesses utilizing mobile devices in mobile environments for human-centric computing. The m-IPS system incorporates temporal-spatial awareness in human-centric computing with various mobile devices and checks users’ temporal spatial information, profiles, and role information to provide precise access control. And it also can extend application of m-IPS to the Internet of things (IoT), which is one of the important advanced technologies for supporting human-centric computing environment completely, for real ubiquitous field with mobile devices

    Context-sensitive authorization for asynchronous communications

    Get PDF
    Main requirement of recent computing environments, like mobile and then ubiquitous computing, is to adapt applications to context. On the other hand, access control generally trust users once they have authenticated, despite the fact that they may reach unauthorized situations. We analyse how dynamic information can be used to improve security in the authorization process, especially in the case of asynchronous communications, like messaging or eventing. We experiment and validate our approach using context as an authorization factor for eventing in Web service for device (like UPnP or DPWS)

    Context-Sensitive Authorization in Interaction Patterns

    Get PDF
    Main requirement of recent computing environments, like mobile and then ubiquitous computing, is to adapt applications to context. On the other hand, access control generally trust users once they have authenticated, despite the fact that they may reach unauthorized situations. We analyse how dynamic information can be used to improve security in the authorization process, and what are the implications when applied to interaction patterns. We experiment and validate our approach using context as an authorization factor for eventing in Web service for device (like UPnP or DPWS)

    Assay of IP mobility management in SDN based mobile network architecture

    Get PDF
    The evolution towards mobile networks flat architecture entreat a key-role for IP mobility management in providing the ubiquitous always-on network access services. This paper provides prospects for efficient mobility management in SDN plus mobile network architecture and describe important call control flows in inter system handover scenario. Distribution of gateway function approach has been followed and evolved with SDN technology. Key improvements with proposed architecture are to support seamless mobility in heterogeneous access environments, remove the chains of IP preservation and optimal data path management according to application needs. The paper assays the proposed evolution in terms of numbers of signaling messages processed by control entities for an inter system handover procedure relative to current mobile network architecture

    CogCell: Cognitive Interplay between 60GHz Picocells and 2.4/5GHz Hotspots in the 5G Era

    Full text link
    Rapid proliferation of wireless communication devices and the emergence of a variety of new applications have triggered investigations into next-generation mobile broadband systems, i.e., 5G. Legacy 2G--4G systems covering large areas were envisioned to serve both indoor and outdoor environments. However, in the 5G-era, 80\% of overall traffic is expected to be generated in indoors. Hence, the current approach of macro-cell mobile network, where there is no differentiation between indoors and outdoors, needs to be reconsidered. We envision 60\,GHz mmWave picocell architecture to support high-speed indoor and hotspot communications. We envisage the 5G indoor network as a combination of-, and interplay between, 2.4/5\,GHz having robust coverage and 60\,GHz links offering high datarate. This requires an intelligent coordination and cooperation. We propose 60\,GHz picocellular network architecture, called CogCell, leveraging the ubiquitous WiFi. We propose to use 60\,GHz for the data plane and 2.4/5GHz for the control plane. The hybrid network architecture considers an opportunistic fall-back to 2.4/5\,GHz in case of poor connectivity in the 60\,GHz domain. Further, to avoid the frequent re-beamforming in 60\,GHz directional links due to mobility, we propose a cognitive module -- a sensor-assisted intelligent beam switching procedure -- which reduces the communication overhead. We believe that the CogCell concept will help future indoor communications and possibly outdoor hotspots, where mobile stations and access points collaborate with each other to improve the user experience.Comment: 14 PAGES in IEEE Communications Magazine, Special issue on Emerging Applications, Services and Engineering for Cognitive Cellular Systems (EASE4CCS), July 201

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    Supporting service discovery, querying and interaction in ubiquitous computing environments.

    Get PDF
    In this paper, we contend that ubiquitous computing environments will be highly heterogeneous, service rich domains. Moreover, future applications will consequently be required to interact with multiple, specialised service location and interaction protocols simultaneously. We argue that existing service discovery techniques do not provide sufficient support to address the challenges of building applications targeted to these emerging environments. This paper makes a number of contributions. Firstly, using a set of short ubiquitous computing scenarios we identify several key limitations of existing service discovery approaches that reduce their ability to support ubiquitous computing applications. Secondly, we present a detailed analysis of requirements for providing effective support in this domain. Thirdly, we provide the design of a simple extensible meta-service discovery architecture that uses database techniques to unify service discovery protocols and addresses several of our key requirements. Lastly, we examine the lessons learnt through the development of a prototype implementation of our architecture

    Context-aware Authorization in Highly Dynamic Environments

    Get PDF
    Highly dynamic computing environments, like ubiquitous and pervasive computing environments, require frequent adaptation of applications. Context is a key to adapt suiting user needs. On the other hand, standard access control trusts users once they have authenticated, despite the fact that they may reach unauthorized contexts. We analyse how taking into account dynamic information like context in the authorization subsystem can improve security, and how this new access control applies to interaction patterns, like messaging or eventing. We experiment and validate our approach using context as an authorization factor for eventing in Web service for device (like UPnP or DPWS), in smart home security

    On the Design of Ambient Intelligent Systems in the Context of Assistive Technologies

    Get PDF
    The design of Ambient Intelligent Systems (AISs) is discussed in the context of assistive technologies. The main issues include ubiquitous communications, context awareness, natural interactions and heterogeneity, which are analyzed using some examples. A layered architecture is proposed for heterogeneous sub-systems integration with three levels of interactions that may be used as a framework to design assistive AISs.Ministerio de Ciencia y TecnologĂ­a TIC2001-1868-C0
    • …
    corecore