415,893 research outputs found

    A history and future of Web APIs

    Get PDF

    Improving sustainability through intelligent cargo and adaptive decision making

    Get PDF
    In the current society, logistics is faced with the challenge to meet more stringent sustainability goals. Shippers and transport service providers both aim to reduce the carbon footprint of their logistic operations. To do so, optimal use of logistics resources and physical infrastructure should be aimed for. An adaptive decision making process for the selection of a specific transport modality, transport provider and timeslot (aimed at minimisation of the carbon footprint) enables shippers to achieve this. This requires shippers to have access to up-to-date capacity information from transport providers (e.g. current and scheduled loading status of the various transport means and information on carbon footprint) and traffic information (e.g. city logistics and current traffic information). A prerequisite is an adequate infrastructure for collaboration and open exchange of information between the various stakeholders in the logistics value chain to obtain the up-to-date information. This paper gives a view on how such an advanced information infrastructure can be realised, currently being developed within the EU iCargo project. The paper describes a reference logistics value chain, including business benefits for each of the roles in the logistics value chain of aiming for sustainability. A case analysis is presented that reflects a practical situation in which the various roles collaborate and exchange information for realizing sustainability goals, using adaptive decision making for selecting a transport modality, transport provider, and timeslot. A high-level overview is provided of the requirements on and technical implementation of the supporting advanced infrastructure for collaboration and open information exchange.In the current society, logistics is faced with the challenge to meet more stringent sustainability goals. Shippers and transport service providers both aim to reduce the carbon footprint of their logistic operations. To do so, optimal use of logistics resources and physical infrastructure should be aimed for. An adaptive decision making process for the selection of a specific transport modality, transport provider and timeslot (aimed at minimisation of the carbon footprint) enables shippers to achieve this. This requires shippers to have access to up-to-date capacity information from transport providers (e.g. current and scheduled loading status of the various transport means and information on carbon footprint) and traffic information (e.g. city logistics and current traffic information). A prerequisite is an adequate infrastructure for collaboration and open exchange of information between the various stakeholders in the logistics value chain to obtain the up-to-date information. This paper gives a view on how such an advanced information infrastructure can be realised, currently being developed within the EU iCargo project. The paper describes a reference logistics value chain, including business benefits for each of the roles in the logistics value chain of aiming for sustainability. A case analysis is presented that reflects a practical situation in which the various roles collaborate and exchange information for realizing sustainability goals, using adaptive decision making for selecting a transport modality, transport provider, and timeslot. A high-level overview is provided of the requirements on and technical implementation of the supporting advanced infrastructure for collaboration and open information exchange.In the current society, logistics is faced with the challenge to meet more stringent sustainability goals. Shippers and transport service providers both aim to reduce the carbon footprint of their logistic operations. To do so, optimal use of logistics resources and physical infrastructure should be aimed for. An adaptive decision making process for the selection of a specific transport modality, transport provider and timeslot (aimed at minimisation of the carbon footprint) enables shippers to achieve this. This requires shippers to have access to up-to-date capacity information from transport providers (e.g. current and scheduled loading status of the various transport means and information on carbon footprint) and traffic information (e.g. city logistics and current traffic information). A prerequisite is an adequate infrastructure for collaboration and open exchange of information between the various stakeholders in the logistics value chain to obtain the up-to-date information. This paper gives a view on how such an advanced information infrastructure can be realised, currently being developed within the EU iCargo project. The paper describes a reference logistics value chain, including business benefits for each of the roles in the logistics value chain of aiming for sustainability. A case analysis is presented that reflects a practical situation in which the various roles collaborate and exchange information for realizing sustainability goals, using adaptive decision making for selecting a transport modality, transport provider, and timeslot. A high-level overview is provided of the requirements on and technical implementation of the supporting advanced infrastructure for collaboration and open information exchange

    NanoFS: a hardware-oriented file system

    Get PDF
    NanoFS is a novel file system for embedded systems and storage-class memories (like flash) and is specially designed to be directly implemented in hardware. NanoFS is based on an original internal layout intended to achieve an optimal hardware implementation of the file system’s file lookup and data fetch operations. File system spe-cification on a sample reader module completely implemented in a pro-grammable device is introduced

    Using formal metamodels to check consistency of functional views in information systems specification

    Get PDF
    UML notations require adaptation for applications such as Information Systems (IS). Thus we have defined IS-UML. The purpose of this article is twofold. First, we propose an extension to this language to deal with functional aspects of IS. We use two views to specify IS transactions: the first one is defined as a combination of behavioural UML diagrams (collaboration and state diagrams), and the second one is based on the definition of specific classes of an extended class diagram. The final objective of the article is to consider consistency issues between the various diagrams of an IS-UML specification. In common with other UML languages, we use a metamodel to define IS-UML. We use class diagrams to summarize the metamodel structure and a formal language, B, for the full metamodel. This allows us to formally express consistency checks and mapping rules between specific metamodel concepts. (C) 2007 Elsevier B.V. All rights reserved

    Introduction to Microservice API Patterns (MAP)

    Get PDF
    The Microservice API Patterns (MAP) language and supporting website premiered under this name at Microservices 2019. MAP distills proven, platform- and technology-independent solutions to recurring (micro-)service design and interface specification problems such as finding well-fitting service granularities, rightsizing message representations, and managing the evolution of APIs and their implementations. In this paper, we motivate the need for such a pattern language, outline the language organization and present two exemplary patterns describing alternative options for representing nested data. We also identify future research and development directions

    The development and deployment of a maintenance operations safety survey

    Get PDF
    Objective: Based on the line operations safety audit (LOSA), two studies were conducted to develop and deploy an equivalent tool for aircraft maintenance: the maintenance operations safety survey (MOSS). Background: Safety in aircraft maintenance is currently measured reactively, based on the number of audit findings, reportable events, incidents, or accidents. Proactive safety tools designed for monitoring routine operations, such as flight data monitoring and LOSA, have been developed predominantly for flight operations. Method: In Study 1, development of MOSS, 12 test peer-to-peer observations were collected to investigate the practicalities of this approach. In Study 2, deployment of MOSS, seven expert observers collected 56 peer-to-peer observations of line maintenance checks at four stations. Narrative data were coded and analyzed according to the threat and error management (TEM) framework. Results: In Study 1, a line check was identified as a suitable unit of observation. Communication and third-party data management were the key factors in gaining maintainer trust. Study 2 identified that on average, maintainers experienced 7.8 threats (operational complexities) and committed 2.5 errors per observation. The majority of threats and errors were inconsequential. Links between specific threats and errors leading to 36 undesired states were established. Conclusion: This research demonstrates that observations of routine maintenance operations are feasible. TEM-based results highlight successful management strategies that maintainers employ on a day-to-day basis. Application: MOSS is a novel approach for safety data collection and analysis. It helps practitioners understand the nature of maintenance errors, promote an informed culture, and support safety management systems in the maintenance domain
    • …
    corecore