5 research outputs found

    Towards Self-Protective Multi-Cloud Applications: MUSA – a Holistic Framework to Support the Security-Intelligent Lifecycle Management of Multi-Cloud Applications

    Get PDF
    The most challenging applications in heterogeneous cloud ecosystems are those that are able to maximise the benefits of the combination of the cloud resources in use: multi-cloud applications. They have to deal with the security of the individual components as well as with the overall application security including the communications and the data flow between the components. In this paper we present a novel approach currently in progress, the MUSA framework. The MUSA framework aims to support the security-intelligent lifecycle management of distributed applications over heterogeneous cloud resources. The framework includes security-by-design mechanisms to allow application self-protection at runtime, as well as methods and tools for the integrated security assurance in both the engineering and operation of multi-cloud applications. The MUSA framework leverages security-by-design, agile and DevOps approaches to enable the security-aware development and operation of multi-cloud applications.European Commission's H202

    A Readiness Model for Secure Requirements Engineering

    Get PDF

    Security Auditing and Multi-Tenancy Threat Evaluation in Public Cloud Infrastructures

    Get PDF
    Cloud service providers typically adopt the multi-tenancy model to optimize resources usage and achieve the promised cost-effectiveness. However, multi-tenancy in the cloud is a double-edged sword. While it enables cost-effective resource sharing, it increases security risks for the hosted applications. Indeed, multiplexing virtual resources belonging to different tenants on the same physical substrate may lead to critical security concerns such as cross-tenant data leakage and denial of service. Therefore, there is an increased necessity and a pressing need to foster transparency and accountability in multi-tenant clouds. In this regard, auditing security compliance of the cloud provider’s infrastructure against standards, regulations and customers’ policies on one side, and evaluating the multi-tenancy threat on the other side, take on an increasing importance to boost the trust between the cloud stakeholders. However, auditing virtual infrastructures is challenging due to the dynamic and layered nature of the cloud. Particularly, inconsistencies in network isolation mechanisms across the cloud stack layers (e.g., the infrastructure management layer and the implementation layer), may lead to virtual network isolation breaches that might be undetectable at a single layer. Additionally, evaluating multi-tenancy threats in the cloud requires systematic ways and effective metrics, which are largely missing in the literature. This thesis work addresses the aforementioned challenges and limitations and articulates around two main topics, namely, security compliance auditing and multi-tenancy threat evaluation in the cloud. Our objective in the first topic is to propose an automated framework that allows auditing the cloud infrastructure from the structural point of view, while focusing on virtualization-related security properties and consistency between multiple control layers. To this end, we devise a multi-layered model related to each cloud stack layer’s view in order to capture the semantics of the audited data and its relation to consistent isolation requirements. Furthermore, we integrate our auditing system into OpenStack, and present our experimental results on assessing several properties related to virtual network isolation and consistency. Our results show that our approach can be successfully used to detect virtual network isolation breaches for large OpenStack-based data centers in a reasonable time. The objective of the second topic is to derive security metrics for evaluating the multi-tenancy threats in public clouds. To this end, we propose security metrics to quantify the proximity between tenants’ virtual resources inside the cloud. Those metrics are defined based on the configuration and deployment of a cloud, such that a cloud provider may apply them to evaluate and mitigate co-residency threats. To demonstrate the effectiveness of our metrics and show their usefulness, we conduct case studies based on both real and synthetic cloud data. We further perform extensive simulations using CloudSim and wellknown VM placement policies. The results show that our metrics effectively capture the impact of potential attacks, and the abnormal degrees of co-residency between a victim and potential attackers, which paves the way for the design of effective mitigation solutions against co-residency attacks

    Security in Cloud Computing: Evaluation and Integration

    Get PDF
    Au cours de la derniĂšre dĂ©cennie, le paradigme du Cloud Computing a rĂ©volutionnĂ© la maniĂšre dont nous percevons les services de la Technologie de l’Information (TI). Celui-ci nous a donnĂ© l’opportunitĂ© de rĂ©pondre Ă  la demande constamment croissante liĂ©e aux besoins informatiques des usagers en introduisant la notion d’externalisation des services et des donnĂ©es. Les consommateurs du Cloud ont gĂ©nĂ©ralement accĂšs, sur demande, Ă  un large Ă©ventail bien rĂ©parti d’infrastructures de TI offrant une plĂ©thore de services. Ils sont Ă  mĂȘme de configurer dynamiquement les ressources du Cloud en fonction des exigences de leurs applications, sans toutefois devenir partie intĂ©grante de l’infrastructure du Cloud. Cela leur permet d’atteindre un degrĂ© optimal d’utilisation des ressources tout en rĂ©duisant leurs coĂ»ts d’investissement en TI. Toutefois, la migration des services au Cloud intensifie malgrĂ© elle les menaces existantes Ă  la sĂ©curitĂ© des TI et en crĂ©e de nouvelles qui sont intrinsĂšques Ă  l’architecture du Cloud Computing. C’est pourquoi il existe un rĂ©el besoin d’évaluation des risques liĂ©s Ă  la sĂ©curitĂ© du Cloud durant le procĂ©dĂ© de la sĂ©lection et du dĂ©ploiement des services. Au cours des derniĂšres annĂ©es, l’impact d’une efficace gestion de la satisfaction des besoins en sĂ©curitĂ© des services a Ă©tĂ© pris avec un sĂ©rieux croissant de la part des fournisseurs et des consommateurs. Toutefois, l’intĂ©gration rĂ©ussie de l’élĂ©ment de sĂ©curitĂ© dans les opĂ©rations de la gestion des ressources du Cloud ne requiert pas seulement une recherche mĂ©thodique, mais aussi une modĂ©lisation mĂ©ticuleuse des exigences du Cloud en termes de sĂ©curitĂ©. C’est en considĂ©rant ces facteurs que nous adressons dans cette thĂšse les dĂ©fis liĂ©s Ă  l’évaluation de la sĂ©curitĂ© et Ă  son intĂ©gration dans les environnements indĂ©pendants et interconnectĂ©s du Cloud Computing. D’une part, nous sommes motivĂ©s Ă  offrir aux consommateurs du Cloud un ensemble de mĂ©thodes qui leur permettront d’optimiser la sĂ©curitĂ© de leurs services et, d’autre part, nous offrons aux fournisseurs un Ă©ventail de stratĂ©gies qui leur permettront de mieux sĂ©curiser leurs services d’hĂ©bergements du Cloud. L’originalitĂ© de cette thĂšse porte sur deux aspects : 1) la description innovatrice des exigences des applications du Cloud relativement Ă  la sĂ©curitĂ© ; et 2) la conception de modĂšles mathĂ©matiques rigoureux qui intĂšgrent le facteur de sĂ©curitĂ© dans les problĂšmes traditionnels du dĂ©ploiement des applications, d’approvisionnement des ressources et de la gestion de la charge de travail au coeur des infrastructures actuelles du Cloud Computing. Le travail au sein de cette thĂšse est rĂ©alisĂ© en trois phases.----------ABSTRACT: Over the past decade, the Cloud Computing paradigm has revolutionized the way we envision IT services. It has provided an opportunity to respond to the ever increasing computing needs of the users by introducing the notion of service and data outsourcing. Cloud consumers usually have online and on-demand access to a large and distributed IT infrastructure providing a plethora of services. They can dynamically configure and scale the Cloud resources according to the requirements of their applications without becoming part of the Cloud infrastructure, which allows them to reduce their IT investment cost and achieve optimal resource utilization. However, the migration of services to the Cloud increases the vulnerability to existing IT security threats and creates new ones that are intrinsic to the Cloud Computing architecture, thus the need for a thorough assessment of Cloud security risks during the process of service selection and deployment. Recently, the impact of effective management of service security satisfaction has been taken with greater seriousness by the Cloud Service Providers (CSP) and stakeholders. Nevertheless, the successful integration of the security element into the Cloud resource management operations does not only require methodical research, but also necessitates the meticulous modeling of the Cloud security requirements. To this end, we address throughout this thesis the challenges to security evaluation and integration in independent and interconnected Cloud Computing environments. We are interested in providing the Cloud consumers with a set of methods that allow them to optimize the security of their services and the CSPs with a set of strategies that enable them to provide security-aware Cloud-based service hosting. The originality of this thesis lies within two aspects: 1) the innovative description of the Cloud applications’ security requirements, which paved the way for an effective quantification and evaluation of the security of Cloud infrastructures; and 2) the design of rigorous mathematical models that integrate the security factor into the traditional problems of application deployment, resource provisioning, and workload management within current Cloud Computing infrastructures. The work in this thesis is carried out in three phases
    corecore