2,041 research outputs found

    Acceptance Criteria for Critical Software Based on Testability Estimates and Test Results

    Get PDF
    Testability is defined as the probability that a program will fail a test, conditional on the program containing some fault. In this paper, we show that statements about the testability of a program can be more simply described in terms of assumptions on the probability distribution of the failure intensity of the program. We can thus state general acceptance conditions in clear mathematical terms using Bayesian inference. We develop two scenarios, one for software for which the reliability requirements are that the software must be completely fault-free, and another for requirements stated as an upper bound on the acceptable failure probability

    A Reference Model for Software and System Inspections. White Paper

    Get PDF
    Software Quality Assurance (SQA) is an important component of the software development process. SQA processes provide assurance that the software products and processes in the project life cycle conform to their specified requirements by planning, enacting, and performing a set of activities to provide adequate confidence that quality is being built into the software. Typical techniques include: (1) Testing (2) Simulation (3) Model checking (4) Symbolic execution (5) Management reviews (6) Technical reviews (7) Inspections (8) Walk-throughs (9) Audits (10) Analysis (complexity analysis, control flow analysis, algorithmic analysis) (11) Formal method Our work over the last few years has resulted in substantial knowledge about SQA techniques, especially the areas of technical reviews and inspections. But can we apply the same QA techniques to the system development process? If yes, what kind of tailoring do we need before applying them in the system engineering context? If not, what types of QA techniques are actually used at system level? And, is there any room for improvement.) After a brief examination of the system engineering literature (especially focused on NASA and DoD guidance) we found that: (1) System and software development process interact with each other at different phases through development life cycle (2) Reviews are emphasized in both system and software development. (Figl.3). For some reviews (e.g. SRR, PDR, CDR), there are both system versions and software versions. (3) Analysis techniques are emphasized (e.g. Fault Tree Analysis, Preliminary Hazard Analysis) and some details are given about how to apply them. (4) Reviews are expected to use the outputs of the analysis techniques. In other words, these particular analyses are usually conducted in preparation for (before) reviews. The goal of our work is to explore the interaction between the Quality Assurance (QA) techniques at the system level and the software level

    Criteria for Designing Testability in Software Systems

    Get PDF

    A methodology for producing reliable software, volume 1

    Get PDF
    An investigation into the areas having an impact on producing reliable software including automated verification tools, software modeling, testing techniques, structured programming, and management techniques is presented. This final report contains the results of this investigation, analysis of each technique, and the definition of a methodology for producing reliable software

    Maintainability Program Requirements for Space Systems

    Get PDF
    This document is established to provide common general requirements for all NASA programs to: design maintainability into all systems where maintenance is a factor in system operation and mission success; and ensure that maintainability characteristics are developed through the systems engineering process. These requirements are not new. Design for ease of maintenance and minimization of repair time have always been fundamental requirements of the systems engineering process. However, new or reusable orbital manned and in-flight maintainable unmanned space systems demand special emphasis on maintainability, and this document has been prepared to meet that need. Maintainability requirements on many NASA programs differ in phasing and task emphasis from requirements promulgated by other Government agencies. This difference is due to the research and development nature of NASA programs where quantities produced are generally small; therefore, the depth of logistics support typical of many programs is generally not warranted. The cost of excessive maintenance is very high due to the logistics problems associated with the space environment. The ability to provide timely maintenance often involves safety considerations for manned space flight applications. This document represents a basic set of requirements that will achieve a design for maintenance. These requirements are directed primarily at manned and unmanned orbital space systems. To be effective, maintainability requirements should be tailored to meet specific NASA program and project needs and constraints. NASA activities shall invoke the requirements of this document consistent with program planning in procurements or on inhouse development efforts

    A software testing estimation and process control model

    Get PDF
    The control of the testing process and estimation of the resource required to perform testing is key to delivering a software product of target quality on budget. This thesis explores the use of testing to remove errors, the part that metrics and models play in this process, and considers an original method for improving the quality of a software product. The thesis investigates the possibility of using software metrics to estimate the testing resource required to deliver a product of target quality into deployment and also determine during the testing phases the correct point in time to proceed to the next testing phase in the life-cycle. Along with the metrics Clear ratio. Chum, Error rate halving. Severity shift, and faults per week, a new metric 'Earliest Visibility' is defined and used to control the testing process. EV is constructed upon the link between the point at which an error is made within development and subsequently found during testing. To increase the effectiveness of testing and reduce costs, whilst maintaining quality the model operates by each test phase being targeted at the errors linked to that test phase and the ability for each test phase to build upon the previous phase. EV also provides a measure of testing effectiveness and fault introduction rate by development phase. The resource estimation model is based on a gradual refinement of an estimate, which is updated following each development phase as more reliable data is available. Used in conjunction with the process control model, which will ensure the correct testing phase is in operation, the estimation model will have accurate data for each testing phase as input. The proposed model and metrics have been developed and tested on a large-scale (4 million LOC) industrial telecommunications product written in C and C++ running within a Unix environment. It should be possible to extend this work to suit other environments and other development life-cycles

    Agile Testing: Improving the Process : Case Descom

    Get PDF
    The thesis was assigned by Descom, a marketing and technology company based in Jyväskylä. The aim of the thesis was to research the current state of testing inside the organization, and to improve on the existing processes and practices. The thesis was carried out as a design research (applied action research), because the focus was improving already existing processes inside a company. The theory base contains a wide range of subjects from agile development models, the testing process, and process improvement models to agile testing. Without a solid base of multiple aspects it would have been impossible to understand how the testing works as a process and how it could have been improved. As Descom uses agile development it was necessary to follow the same principles throughout the writing of the thesis and on results. As a result information was provided for the company about the current state of testing procedures at Descom and how to improve the testing and processes in the future. The documentation already existing for testing such as the test plan and test report were updated. New documents such as a process improvement plan based on Critical Testing Processes, test strategy and testing policy were also created. Figures of the testing process, and the processes for all test types in use were created to be used as a visual aid for understanding the testing as whole at Descom.Opinnäytetyön toimeksianto tuli Descomilta, joka on Jyväskylästä lähtöisin oleva markkinointi ja teknologia yritys. Työn tavoitteena oli tutkia testauksen tilaa organisaatiossa ja kehittää olemassa olevia prosesseja ja käytäntöjä. Tutkimusmenetelmäksi valikoitui kehittämistutkimus, koska painotus oli olemassa olevien prosessien kehityksessä yrityksen sisällä. Teoriapohjassa käsiteltiin monia aiheita ketterästä sovelluskehityksestä, testausprosessista ja prosessi kehityksestä aina ketterään testaukseen asti. Ilman kattavaa pohjaa monille osa-alueille, olisi ollut mahdotonta ymmärtää miten testaus toimii prosessina ja miten sitä pystyy kehittämään. Descom toimii ketterän sovelluskehityksen mukaisesti projekteissaan, joten oli tärkeää seurata samoja ketteriä periaatteita läpi opinnäytetyön kirjoittamisen ja tuloksissa. Tuloksena saatiin tietoa yritykselle, siitä miten testaus on toiminut Descomilla ja kuinka testausta ja prosesseja tulisi kehittää tulevaisuudessa. Myös aiemmin olemassa olleet testausdokumentit päivitettiin. Uusina dokumentteina laadittiin suunnitelma prosessikehitykseen, joka perustui Critical Testing Processes –malliin, testausstrategia ja testauspolitiikka. Prosessikuvaus tehtiin kaavioita käyttäen, joilla kuvattiin prosessi kokonaisuutena sekä käytettävät testaustasot

    Guidelines for creating a testing process for a software - case study of comparing testing of two different size of slot game projects

    Get PDF
    Nowadays an important part of software development life cycle is software testing. As software and systems become more complex and integrated with other software and systems the importance of software testing becomes critical part of a successful software development process. Testing itself has a little value but for the software the testing is necessary. Well planned software testing can make mediocre software a great one whereas poorly executed testing can even harm the final product. Thus, it is important that there is well designed testing process for a software project. As every software project differ from each other the testing process can also vary from project to project. There are multiple levels, types and techniques of testing that can implemented to a testing process made for a certain software project. Creating an efficient and functional testing process can be a difficult task. In the case study of the paper it is concluded that two similar software projects of different size have multiple differences but do not force of creating two different testing process as both use the same kind development life cycle and both software projects are the same type, slot games. The major difference for testing is that as a major software project, compared to a minor one, has more requirements it is important to consider them in testing strategy and planning but not in the testing process
    corecore