8,300 research outputs found

    Non-Zero Sum Games for Reactive Synthesis

    Get PDF
    In this invited contribution, we summarize new solution concepts useful for the synthesis of reactive systems that we have introduced in several recent publications. These solution concepts are developed in the context of non-zero sum games played on graphs. They are part of the contributions obtained in the inVEST project funded by the European Research Council.Comment: LATA'16 invited pape

    Equilibria, Fixed Points, and Complexity Classes

    Get PDF
    Many models from a variety of areas involve the computation of an equilibrium or fixed point of some kind. Examples include Nash equilibria in games; market equilibria; computing optimal strategies and the values of competitive games (stochastic and other games); stable configurations of neural networks; analysing basic stochastic models for evolution like branching processes and for language like stochastic context-free grammars; and models that incorporate the basic primitives of probability and recursion like recursive Markov chains. It is not known whether these problems can be solved in polynomial time. There are certain common computational principles underlying different types of equilibria, which are captured by the complexity classes PLS, PPAD, and FIXP. Representative complete problems for these classes are respectively, pure Nash equilibria in games where they are guaranteed to exist, (mixed) Nash equilibria in 2-player normal form games, and (mixed) Nash equilibria in normal form games with 3 (or more) players. This paper reviews the underlying computational principles and the corresponding classes

    Formation of coalition structures as a non-cooperative game

    Full text link
    Traditionally social sciences are interested in structuring people in multiple groups based on their individual preferences. This pa- per suggests an approach to this problem in the framework of a non- cooperative game theory. Definition of a suggested finite game includes a family of nested simultaneous non-cooperative finite games with intra- and inter-coalition externalities. In this family, games differ by the size of maximum coalition, partitions and by coalition structure formation rules. A result of every game consists of partition of players into coalitions and a payoff? profiles for every player. Every game in the family has an equilibrium in mixed strategies with possibly more than one coalition. The results of the game differ from those conventionally discussed in cooperative game theory, e.g. the Shapley value, strong Nash, coalition-proof equilibrium, core, kernel, nucleolus. We discuss the following applications of the new game: cooperation as an allocation in one coalition, Bayesian games, stochastic games and construction of a non-cooperative criterion of coalition structure stability for studying focal points.Comment: arXiv admin note: text overlap with arXiv:1612.02344, arXiv:1612.0374

    Solving Large Extensive-Form Games with Strategy Constraints

    Full text link
    Extensive-form games are a common model for multiagent interactions with imperfect information. In two-player zero-sum games, the typical solution concept is a Nash equilibrium over the unconstrained strategy set for each player. In many situations, however, we would like to constrain the set of possible strategies. For example, constraints are a natural way to model limited resources, risk mitigation, safety, consistency with past observations of behavior, or other secondary objectives for an agent. In small games, optimal strategies under linear constraints can be found by solving a linear program; however, state-of-the-art algorithms for solving large games cannot handle general constraints. In this work we introduce a generalized form of Counterfactual Regret Minimization that provably finds optimal strategies under any feasible set of convex constraints. We demonstrate the effectiveness of our algorithm for finding strategies that mitigate risk in security games, and for opponent modeling in poker games when given only partial observations of private information.Comment: Appeared in AAAI 201

    Expectations or Guarantees? I Want It All! A crossroad between games and MDPs

    Full text link
    When reasoning about the strategic capabilities of an agent, it is important to consider the nature of its adversaries. In the particular context of controller synthesis for quantitative specifications, the usual problem is to devise a strategy for a reactive system which yields some desired performance, taking into account the possible impact of the environment of the system. There are at least two ways to look at this environment. In the classical analysis of two-player quantitative games, the environment is purely antagonistic and the problem is to provide strict performance guarantees. In Markov decision processes, the environment is seen as purely stochastic: the aim is then to optimize the expected payoff, with no guarantee on individual outcomes. In this expository work, we report on recent results introducing the beyond worst-case synthesis problem, which is to construct strategies that guarantee some quantitative requirement in the worst-case while providing an higher expected value against a particular stochastic model of the environment given as input. This problem is relevant to produce system controllers that provide nice expected performance in the everyday situation while ensuring a strict (but relaxed) performance threshold even in the event of very bad (while unlikely) circumstances. It has been studied for both the mean-payoff and the shortest path quantitative measures.Comment: In Proceedings SR 2014, arXiv:1404.041
    • …
    corecore