3,091 research outputs found

    Crew Planning at Netherlands Railways: Improving Fairness, Attractiveness, and Efficiency

    Get PDF
    The development and improvement of decision support voor crew planning at Netherlands Railways (NS

    Disruption management in passenger railway transportation.

    Get PDF
    This paper deals with disruption management in passengerrailway transportation. In the disruption management process, manyactors belonging to different organizations play a role. In this paperwe therefore describe the process itself and the roles of thedifferent actors.Furthermore, we discuss the three main subproblems in railwaydisruption management: timetable adjustment, and rolling stock andcrew re-scheduling. Next to a general description of these problems,we give an overview of the existing literature and we present somedetails of the specific situations at DSB S-tog and NS. These arethe railway operators in the suburban area of Copenhagen, Denmark,and on the main railway lines in the Netherlands, respectively.Since not much research has been carried out yet on OperationsResearch models for disruption management in the railway context,models and techniques that have been developed for related problemsin the airline world are discussed as well.Finally, we address the integration of the re-scheduling processesof the timetable, and the resources rolling stock and crew.

    A decision support system for crew planning in passenger transportation using a flexible branch-and-price algorithm

    Get PDF
    This paper discusses a decision support system for airline and railway crew planning. The system is a state-of-the-art branch-and-price solver that is used for crew scheduling and crew rostering. We briefly discuss the mathematical background of the solver, of which most part is covered in the Operations Research literature. Crew scheduling is crew planning for one or a few days that results in crew duties or pairings, and crew rostering is crew planning for at least one week for individual crew members. Technical issues about the system and its implementation are covered in more detail, as well as several applications. In particular, we focus on

    Large-scale mixed integer optimization approaches for scheduling airline operations under irregularity

    Get PDF
    Perhaps no single industry has benefited more from advancements in computation, analytics, and optimization than the airline industry. Operations Research (OR) is now ubiquitous in the way airlines develop their schedules, price their itineraries, manage their fleet, route their aircraft, and schedule their crew. These problems, among others, are well-known to industry practitioners and academics alike and arise within the context of the planning environment which takes place well in advance of the date of departure. One salient feature of the planning environment is that decisions are made in a frictionless environment that do not consider perturbations to an existing schedule. Airline operations are rife with disruptions caused by factors such as convective weather, aircraft failure, air traffic control restrictions, network effects, among other irregularities. Substantially less work in the OR community has been examined within the context of the real-time operational environment. While problems in the planning and operational environments are similar from a mathematical perspective, the complexity of the operational environment is exacerbated by two factors. First, decisions need to be made in as close to real-time as possible. Unlike the planning phase, decision-makers do not have hours of time to return a decision. Secondly, there are a host of operational considerations in which complex rules mandated by regulatory agencies like the Federal Administration Association (FAA), airline requirements, or union rules. Such restrictions often make finding even a feasible set of re-scheduling decisions an arduous task, let alone the global optimum. The goals and objectives of this thesis are found in Chapter 1. Chapter 2 provides an overview airline operations and the current practices of disruption management employed at most airlines. Both the causes and the costs associated with irregular operations are surveyed. The role of airline Operations Control Center (OCC) is discussed in which serves as the real-time decision making environment that is important to understand for the body of this work. Chapter 3 introduces an optimization-based approach to solve the Airline Integrated Recovery (AIR) problem that simultaneously solves re-scheduling decisions for the operating schedule, aircraft routings, crew assignments, and passenger itineraries. The methodology is validated by using real-world industrial data from a U.S. hub-and-spoke regional carrier and we show how the incumbent approach can dominate the incumbent sequential approach in way that is amenable to the operational constraints imposed by a decision-making environment. Computational effort is central to the efficacy of any algorithm present in a real-time decision making environment such as an OCC. The latter two chapters illustrate various methods that are shown to expedite more traditional large-scale optimization methods that are applicable a wide family of optimization problems, including the AIR problem. Chapter 4 shows how delayed constraint generation and column generation may be used simultaneously through use of alternate polyhedra that verify whether or not a given cut that has been generated from a subset of variables remains globally valid. While Benders' decomposition is a well-known algorithm to solve problems exhibiting a block structure, one possible drawback is slow convergence. Expediting Benders' decomposition has been explored in the literature through model reformulation, improving bounds, and cut selection strategies, but little has been studied how to strengthen a standard cut. Chapter 5 examines four methods for the convergence may be accelerated through an affine transformation into the interior of the feasible set, generating a split cut induced by a standard Benders' inequality, sequential lifting, and superadditive lifting over a relaxation of a multi-row system. It is shown that the first two methods yield the most promising results within the context of an AIR model.PhDCommittee Co-Chair: Clarke, John-Paul; Committee Co-Chair: Johnson, Ellis; Committee Member: Ahmed, Shabbir; Committee Member: Clarke, Michael; Committee Member: Nemhauser, Georg

    Dynamic Railway Crew Planning with Fairness over Time

    Get PDF

    Dynamic Railway Crew Planning with Fairness over Time

    Get PDF

    Column generation with dynamic duty selection for railway crew rescheduling

    Get PDF
    The Dutch railway network experiences about three large disruptions per day on average. In this paper, we present an algorithm to reschedule the crews when such a disruption occurs. The algorithm is based on column generation techniques combined with Lagrangian heuristics. Since the number of duties is very large in practical instances, we first define a core problem of tractable size. If some tasks remain uncovered in the solution of the core problem, we perform a neighborhood exploration to improve the solution. Computational experiments with real-life instances show that our method is capable of producing good solutions within a couple of minutes of Computation time
    • ā€¦
    corecore