44 research outputs found

    Hybrid meta-heuristics for combinatorial optimization

    Get PDF
    Combinatorial optimization problems arise, in many forms, in vari- ous aspects of everyday life. Nowadays, a lot of services are driven by optimization algorithms, enabling us to make the best use of the available resources while guaranteeing a level of service. Ex- amples of such services are public transportation, goods delivery, university time-tabling, and patient scheduling. Thanks also to the open data movement, a lot of usage data about public and private services is accessible today, sometimes in aggregate form, to everyone. Examples of such data are traffic information (Google), bike sharing systems usage (CitiBike NYC), location services, etc. The availability of all this body of data allows us to better understand how people interacts with these services. However, in order for this information to be useful, it is necessary to develop tools to extract knowledge from it and to drive better decisions. In this context, optimization is a powerful tool, which can be used to improve the way the available resources are used, avoid squandering, and improve the sustainability of services. The fields of meta-heuristics, artificial intelligence, and oper- ations research, have been tackling many of these problems for years, without much interaction. However, in the last few years, such communities have started looking at each other’s advance- ments, in order to develop optimization techniques that are faster, more robust, and easier to maintain. This effort gave birth to the fertile field of hybrid meta-heuristics.openDottorato di ricerca in Ingegneria industriale e dell'informazioneopenUrli, Tommas

    Computing and Information Science

    Full text link
    Cornell University Courses of Study Vol. 98 2006/200

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Estensione del pool evolution pattern di FastFlow per il supporto di algoritmi genetici ad isole.

    Get PDF
    La tesi estende il pattern pool evolution presente nel framework di programmazione parallela strutturata FastFlow, in modo da poter ampliare l'applicabilità a tutti quei problemi la cui soluzione è ricavabile dal lavoro svolto su più popolazioni. L’obiettivo è quello di aumentare la velocità e/o la qualità della soluzione trovata. Il nuovo pattern implementa un modello di computazione genetica detto "ad isole". Nello specifico il nuovo pattern implementa una variante di tale modello che prevede lo scambio di informazioni fra le varie isole al fine di aumentare la variabilità dell’intera popolazione, riducendo il rischio del fenomeno di convergenza verso minimi locali (stagnazione). La tesi presenta due implementazioni del pattern pool evolution secondo il modello ad isole: la prima operante su sottopopolazioni, la seconda operante su una singola multi-popolazione. Entrambe le versioni vegono confrontate con il pattern pool evolution di FastFlow sottolineandone pregi e difetti. A tal fine, si utilizzano un certo numero di applicazioni sviluppate secondo il paradigma di programmazione genetica

    Parallelised and vectorised ant colony optimization

    Get PDF
    Ant Colony Optimisation (ACO) is a versatile population-based optimisation metaheuristic based on the foraging behaviour of certain species of ant, and is part of the Evolutionary Computation family of algorithms. While ACO generally provides good quality solutions to the problems it is applied to, two key limitations prevent it from being truly viable on large-scale problems: A high memory requirement that grows quadratically with instance size, and high execution time. This thesis presents a parallelised and vectorised implementation of ACO using OpenMP and AVX SIMD instructions; while this alone is enough to improve upon the execution time of the algorithm, this implementation also features an alternative memory structure and a novel candidate set approach, the use of which significantly reduces the memory requirement of ACO. This parallelism is enabled through the use of Max-Min Ant System, an ACO variant that only utilises local memory during the solution process and therefore risks no synchronisation issues, and an adaptation of vRoulette, a vector-compatible variant of the common roulette wheel selection method. Through the use of these techniques ACO is also able to find good quality solutions for the very large Art TSPs, a problem set that has traditionally been unfeasible to solve with ACO due to high memory requirements and execution time. These techniques can also benefit ACO when it comes to solving other problems. In this case the Virtual Machine Placement problem, in which Virtual Machines have to be efficiently allocated to Physical Machines in a cloud environment, is used as a benchmark, with significant improvements to execution time

    Quantum Speed-ups for Boolean Satisfiability and Derivative-Free Optimization

    Get PDF
    In this thesis, we have considered two important problems, Boolean satisfiability (SAT) and derivative free optimization in the context of large scale quantum computers. In the first part, we survey well known classical techniques for solving satisfiability. We compute the approximate time it would take to solve SAT instances using quantum techniques and compare it with state-of-the heart classical heuristics employed annually in SAT competitions. In the second part of the thesis, we consider a few classically well known algorithms for derivative free optimization which are ubiquitously employed in engineering problems. We propose a quantum speedup to this classical algorithm by using techniques of the quantum minimum finding algorithm. In the third part of the thesis, we consider practical applications in the fields of bio-informatics, petroleum refineries and civil engineering which involve solving either satisfiability or derivative free optimization. We investigate if using known quantum techniques to speedup these algorithms directly translate to the benefit of industries which invest in technology to solve these problems. In the last section, we propose a few open problems which we feel are immediate hurdles, either from an algorithmic or architecture perspective to getting a convincing speedup for the practical problems considered
    corecore