7,289 research outputs found

    BrainFrame: A node-level heterogeneous accelerator platform for neuron simulations

    Full text link
    Objective: The advent of High-Performance Computing (HPC) in recent years has led to its increasing use in brain study through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a single acceleration (or homogeneous) platform to effectively address the complete array of modeling requirements. Approach: In this paper we propose and build BrainFrame, a heterogeneous acceleration platform, incorporating three distinct acceleration technologies, a Dataflow Engine, a Xeon Phi and a GP-GPU. The PyNN framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different instances of a state-of-the-art neuron model, modeling the Inferior- Olivary Nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal- network dimensions but also different network-connectivity circumstances that can drastically change application workload characteristics. Main results: The synthetic approach of three HPC technologies demonstrated that BrainFrame is better able to cope with the modeling diversity encountered. Our performance analysis shows clearly that the model directly affect performance and all three technologies are required to cope with all the model use cases.Comment: 16 pages, 18 figures, 5 table

    Evolution of central pattern generators for the control of a five-link bipedal walking mechanism

    Get PDF
    Central pattern generators (CPGs), with a basis is neurophysiological studies, are a type of neural network for the generation of rhythmic motion. While CPGs are being increasingly used in robot control, most applications are hand-tuned for a specific task and it is acknowledged in the field that generic methods and design principles for creating individual networks for a given task are lacking. This study presents an approach where the connectivity and oscillatory parameters of a CPG network are determined by an evolutionary algorithm with fitness evaluations in a realistic simulation with accurate physics. We apply this technique to a five-link planar walking mechanism to demonstrate its feasibility and performance. In addition, to see whether results from simulation can be acceptably transferred to real robot hardware, the best evolved CPG network is also tested on a real mechanism. Our results also confirm that the biologically inspired CPG model is well suited for legged locomotion, since a diverse manifestation of networks have been observed to succeed in fitness simulations during evolution.Comment: 11 pages, 9 figures; substantial revision of content, organization, and quantitative result

    Reproducible Host Networking Evaluation with End-to-End Simulation

    Get PDF
    Networking researchers are facing growing challenges in evaluating and reproducing results for modern network systems. As systems rely on closer integration of system components and cross-layer optimizations in the pursuit of performance and efficiency, they are also increasingly tied to specific hardware and testbed properties. Combined with a trend towards heterogeneous hardware, such as protocol offloads, SmartNICs, and in-network accelerators, researchers face the choice of either investing more and more time and resources into comparisons to prior work or, alternatively, lower the standards for evaluation. We aim to address this challenge by introducing SimBricks, a simulation framework that decouples networked systems from the physical testbed and enables reproducible end-to-end evaluation in simulation. Instead of reinventing the wheel, SimBricks is a modular framework for combining existing tried-and-true simulators for individual components, processor and memory, NIC, and network, into complete testbeds capable of running unmodified systems. In our evaluation, we reproduce key findings from prior work, including dctcp congestion control, NOPaxos in-network consensus acceleration, and the Corundum FPGA NIC.Comment: 15 pages, 10 figures, under submissio

    Data-driven Flood Emulation: Speeding up Urban Flood Predictions by Deep Convolutional Neural Networks

    Full text link
    Computational complexity has been the bottleneck of applying physically-based simulations on large urban areas with high spatial resolution for efficient and systematic flooding analyses and risk assessments. To address this issue of long computational time, this paper proposes that the prediction of maximum water depth rasters can be considered as an image-to-image translation problem where the results are generated from input elevation rasters using the information learned from data rather than by conducting simulations, which can significantly accelerate the prediction process. The proposed approach was implemented by a deep convolutional neural network trained on flood simulation data of 18 designed hyetographs on three selected catchments. Multiple tests with both designed and real rainfall events were performed and the results show that the flood predictions by neural network uses only 0.5 % of time comparing with physically-based approaches, with promising accuracy and ability of generalizations. The proposed neural network can also potentially be applied to different but relevant problems including flood predictions for urban layout planning

    Non-concave fundamental diagrams and phase transitions in a stochastic traffic cellular automaton

    Full text link
    Within the class of stochastic cellular automata models of traffic flows, we look at the velocity dependent randomization variant (VDR-TCA) whose parameters take on a specific set of extreme values. These initial conditions lead us to the discovery of the emergence of four distinct phases. Studying the transitions between these phases, allows us to establish a rigorous classification based on their tempo-spatial behavioral characteristics. As a result from the system's complex dynamics, its flow-density relation exhibits a non-concave region in which forward propagating density waves are encountered. All four phases furthermore share the common property that moving vehicles can never increase their speed once the system has settled into an equilibrium
    • …
    corecore