752 research outputs found

    An empirical evaluation of High-Level Synthesis languages and tools for database acceleration

    Get PDF
    High Level Synthesis (HLS) languages and tools are emerging as the most promising technique to make FPGAs more accessible to software developers. Nevertheless, picking the most suitable HLS for a certain class of algorithms depends on requirements such as area and throughput, as well as on programmer experience. In this paper, we explore the different trade-offs present when using a representative set of HLS tools in the context of Database Management Systems (DBMS) acceleration. More specifically, we conduct an empirical analysis of four representative frameworks (Bluespec SystemVerilog, Altera OpenCL, LegUp and Chisel) that we utilize to accelerate commonly-used database algorithms such as sorting, the median operator, and hash joins. Through our implementation experience and empirical results for database acceleration, we conclude that the selection of the most suitable HLS depends on a set of orthogonal characteristics, which we highlight for each HLS framework.Peer ReviewedPostprint (author’s final draft

    FASTCUDA: Open Source FPGA Accelerator & Hardware-Software Codesign Toolset for CUDA Kernels

    Get PDF
    Using FPGAs as hardware accelerators that communicate with a central CPU is becoming a common practice in the embedded design world but there is no standard methodology and toolset to facilitate this path yet. On the other hand, languages such as CUDA and OpenCL provide standard development environments for Graphical Processing Unit (GPU) programming. FASTCUDA is a platform that provides the necessary software toolset, hardware architecture, and design methodology to efficiently adapt the CUDA approach into a new FPGA design flow. With FASTCUDA, the CUDA kernels of a CUDA-based application are partitioned into two groups with minimal user intervention: those that are compiled and executed in parallel software, and those that are synthesized and implemented in hardware. A modern low power FPGA can provide the processing power (via numerous embedded micro-CPUs) and the logic capacity for both the software and hardware implementations of the CUDA kernels. This paper describes the system requirements and the architectural decisions behind the FASTCUDA approach

    A Survey and Evaluation of FPGA High-Level Synthesis Tools

    Get PDF
    High-level synthesis (HLS) is increasingly popular for the design of high-performance and energy-efficient heterogeneous systems, shortening time-to-market and addressing today's system complexity. HLS allows designers to work at a higher-level of abstraction by using a software program to specify the hardware functionality. Additionally, HLS is particularly interesting for designing field-programmable gate array circuits, where hardware implementations can be easily refined and replaced in the target device. Recent years have seen much activity in the HLS research community, with a plethora of HLS tool offerings, from both industry and academia. All these tools may have different input languages, perform different internal optimizations, and produce results of different quality, even for the very same input description. Hence, it is challenging to compare their performance and understand which is the best for the hardware to be implemented. We present a comprehensive analysis of recent HLS tools, as well as overview the areas of active interest in the HLS research community. We also present a first-published methodology to evaluate different HLS tools. We use our methodology to compare one commercial and three academic tools on a common set of C benchmarks, aiming at performing an in-depth evaluation in terms of performance and the use of resources

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft
    corecore