41,551 research outputs found

    Designing IS service strategy: an information acceleration approach

    Get PDF
    Information technology-based innovation involves considerable risk that requires insight and foresight. Yet, our understanding of how managers develop the insight to support new breakthrough applications is limited and remains obscured by high levels of technical and market uncertainty. This paper applies a new experimental method based on “discrete choice analysis” and “information acceleration” to directly examine how decisions are made in a way that is behaviourally sound. The method is highly applicable to information systems researchers because it provides relative importance measures on a common scale, greater control over alternate explanations and stronger evidence of causality. The practical implications are that information acceleration reduces the levels of uncertainty and generates a more accurate rationale for IS service strategy decisions

    Should Optimal Designers Worry About Consideration?

    Full text link
    Consideration set formation using non-compensatory screening rules is a vital component of real purchasing decisions with decades of experimental validation. Marketers have recently developed statistical methods that can estimate quantitative choice models that include consideration set formation via non-compensatory screening rules. But is capturing consideration within models of choice important for design? This paper reports on a simulation study of a vehicle portfolio design when households screen over vehicle body style built to explore the importance of capturing consideration rules for optimal designers. We generate synthetic market share data, fit a variety of discrete choice models to the data, and then optimize design decisions using the estimated models. Model predictive power, design "error", and profitability relative to ideal profits are compared as the amount of market data available increases. We find that even when estimated compensatory models provide relatively good predictive accuracy, they can lead to sub-optimal design decisions when the population uses consideration behavior; convergence of compensatory models to non-compensatory behavior is likely to require unrealistic amounts of data; and modeling heterogeneity in non-compensatory screening is more valuable than heterogeneity in compensatory trade-offs. This supports the claim that designers should carefully identify consideration behaviors before optimizing product portfolios. We also find that higher model predictive power does not necessarily imply better design decisions; that is, different model forms can provide "descriptive" rather than "predictive" information that is useful for design.Comment: 5 figures, 26 pages. In Press at ASME Journal of Mechanical Design (as of 3/17/15
    • …
    corecore