202 research outputs found

    Active vibration control of a fluid/plate system

    Get PDF
    Cette thèse s’intéresse au problème du contrôle actif des vibrations structurelles d’une aile d’avion induites par le ballottement du carburant dans les réservoirs qu’elle contient. L'étude proposée ici est concentrée sur l'analyse d'un dispositif expérimental composé d'une longue plaque rectangulaire en aluminium équipée d'actionneurs et de capteurs piézoélectriques et d'un réservoir cylindrique. La difficulté principale réside dans le couplage complexe entre les modes de vibration de l’aile et les modes de ballottement du liquide. Un modèle de ce dispositif à l’aide d’équations aux dérivées partielles est tout d’abord construit. Ce modèle de dimension infinie couple une équation des plaques avec l'équation de Bernoulli pour le mouvement du fluide dans le réservoir. En analysant la contribution énergétique des modes, une approximation en dimension finie, de type espace d'état est alors construite. Après une méthode de recalage fréquentiel du modèle, un contrôle est réalisé en utilisant dans un premier temps une méthode par placement de pôle et dans un deuxième temps, la théorie de la commande robuste H-infini. La dimension du modèle et les performances demandées imposent le calcul d’un contrôleur H-infini d'ordre réduit, conçu en utilisant la librairie HIFOO 2.0 et testé sur le dispositif expérimental pour différents niveaux de remplissage. Finalement, le problème de la correction simultanée avec un correcteur HIFOO d'ordre réduit est aussi analysé.We consider the problem of the active reduction of structural vibrations of a plane wing induced by the sloshing of large masses of fuel inside partly full tank. This study focuses on an experimental device composed of an aluminum rectangular plate equipped with piezoelectric actuators/sensors at the clamped end and with a cylindrical tip-tank, more or less filled with liquid, at the opposite free end. The control is performed through piezoelectric actuators and the main difficulty comes from the complex coupling between the flexible modes of the wing and the sloshing modes of the fuel. First, a partial derivative equation model is computed by coupling a plate equation with a Bernoulli equation for the fluid motion. After analyzing the energetic contribution of each mode, a state space approximation is established. After a model matching procedure, a control is computed by using the pole placement method and the H-infinity theory. Due to the large scale of the synthesis model and to the simultaneous performance requirements, a reduced-order H-infinity controller is computed using the HIFOO 2.0 package and tested on the experimental device for different filling levels. Finally, the problem of simultaneous control with a reduced order HIFOO controller is tackled. Experimental results of this non-convex optimization problem are given and commented

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    The Fifth NASA/DOD Controls-Structures Interaction Technology Conference, part 2

    Get PDF
    This publication is a compilation of the papers presented at the Fifth NASA/DoD Controls-Structures Interaction (CSI) Technology Conference held in Lake Tahoe, Nevada, March 3-5, 1992. The conference, which was jointly sponsored by the NASA Office of Aeronautics and Space Technology and the Department of Defense, was organized by the NASA Langley Research Center. The purpose of this conference was to report to industry, academia, and government agencies on the current status of controls-structures interaction technology. The agenda covered ground testing, integrated design, analysis, flight experiments and concepts

    Proceeding Of Mechanical Engineering Research Day 2016 (MERD’16)

    Get PDF
    This Open Access e-Proceeding contains a compilation of 105 selected papers from the Mechanical Engineering Research Day 2016 (MERD’16) event, which is held in Kampus Teknologi, Universiti Teknikal Malaysia Melaka (UTeM) - Melaka, Malaysia, on 31 March 2016. The theme chosen for this event is ‘IDEA. INSPIRE. INNOVATE’. It was gratifying to all of us when the response for MERD’16 is overwhelming as the technical committees received more than 200 submissions from various areas of mechanical engineering. After a peer-review process, the editors have accepted 105 papers for the e-proceeding that cover 7 main themes. This open access e-Proceeding can be viewed or downloaded at www3.utem.edu.my/care/proceedings. We hope that these proceeding will serve as a valuable reference for researchers. With the large number of submissions from the researchers in other faculties, the event has achieved its main objective which is to bring together educators, researchers and practitioners to share their findings and perhaps sustaining the research culture in the university. The topics of MERD’16 are based on a combination of fundamental researches, advanced research methodologies and application technologies. As the editor-in-chief, we would like to express our gratitude to the editorial board and fellow review members for their tireless effort in compiling and reviewing the selected papers for this proceeding. We would also like to extend our great appreciation to the members of the Publication Committee and Secretariat for their excellent cooperation in preparing the proceeding of MERD’16

    Shokkakugaku ni motozuku ningen no sosa no jitsugen

    Get PDF

    Proceedings of the Workshop on Identification and Control of Flexible Space Structures, volume 1

    Get PDF
    Identification and control of flexible space structures were studied. Exploration of the most advanced modeling estimation, identification and control methodologies to flexible space structures was discussed. The following general areas were discussed: space platforms, antennas, and flight experiments; control/structure interactions - modeling, integrated design and optimization, control and stabilization, and shape control; control technology; control of space stations; large antenna control, dynamics and control experiments, and control/structure interaction experiments
    corecore