4,945 research outputs found

    Iterative restricted space search : a solving approach based on hybridization

    Get PDF
    Face à la complexité qui caractérise les problèmes d'optimisation de grande taille l'exploration complète de l'espace des solutions devient rapidement un objectif inaccessible. En effet, à mesure que la taille des problèmes augmente, des méthodes de solution de plus en plus sophistiquées sont exigées afin d'assurer un certain niveau d 'efficacité. Ceci a amené une grande partie de la communauté scientifique vers le développement d'outils spécifiques pour la résolution de problèmes de grande taille tels que les méthodes hybrides. Cependant, malgré les efforts consentis dans le développement d'approches hybrides, la majorité des travaux se sont concentrés sur l'adaptation de deux ou plusieurs méthodes spécifiques, en compensant les points faibles des unes par les points forts des autres ou bien en les adaptant afin de collaborer ensemble. Au meilleur de notre connaissance, aucun travail à date n'à été effectué pour développer un cadre conceptuel pour la résolution efficace de problèmes d'optimisation de grande taille, qui soit à la fois flexible, basé sur l'échange d'information et indépendant des méthodes qui le composent. L'objectif de cette thèse est d'explorer cette avenue de recherche en proposant un cadre conceptuel pour les méthodes hybrides, intitulé la recherche itérative de l'espace restreint, ±Iterative Restricted Space Search (IRSS)>>, dont, la principale idée est la définition et l'exploration successives de régions restreintes de l'espace de solutions. Ces régions, qui contiennent de bonnes solutions et qui sont assez petites pour être complètement explorées, sont appelées espaces restreints "Restricted Spaces (RS)". Ainsi, l'IRSS est une approche de solution générique, basée sur l'interaction de deux phases algorithmiques ayant des objectifs complémentaires. La première phase consiste à identifier une région restreinte intéressante et la deuxième phase consiste à l'explorer. Le schéma hybride de l'approche de solution permet d'alterner entre les deux phases pour un nombre fixe d'itérations ou jusqu'à l'atteinte d'une certaine limite de temps. Les concepts clés associées au développement de ce cadre conceptuel et leur validation seront introduits et validés graduellement dans cette thèse. Ils sont présentés de manière à permettre au lecteur de comprendre les problèmes que nous avons rencontrés en cours de développement et comment les solutions ont été conçues et implémentées. À cette fin, la thèse a été divisée en quatre parties. La première est consacrée à la synthèse de l'état de l'art dans le domaine de recherche sur les méthodes hybrides. Elle présente les principales approches hybrides développées et leurs applications. Une brève description des approches utilisant le concept de restriction d'espace est aussi présentée dans cette partie. La deuxième partie présente les concepts clés de ce cadre conceptuel. Il s'agit du processus d'identification des régions restreintes et des deux phases de recherche. Ces concepts sont mis en oeuvre dans un schéma hybride heuristique et méthode exacte. L'approche a été appliquée à un problème d'ordonnancement avec deux niveaux de décision, relié au contexte des pâtes et papier: "Pulp Production Scheduling Problem". La troisième partie a permit d'approfondir les concepts développés et ajuster les limitations identifiées dans la deuxième partie, en proposant une recherche itérative appliquée pour l'exploration de RS de grande taille et une structure en arbre binaire pour l'exploration de plusieurs RS. Cette structure a l'avantage d'éviter l'exploration d 'un espace déjà exploré précédemment tout en assurant une diversification naturelle à la méthode. Cette extension de la méthode a été testée sur un problème de localisation et d'allocation en utilisant un schéma d'hybridation heuristique-exact de manière itérative. La quatrième partie généralise les concepts préalablement développés et conçoit un cadre général qui est flexible, indépendant des méthodes utilisées et basé sur un échange d'informations entre les phases. Ce cadre a l'avantage d'être général et pourrait être appliqué à une large gamme de problèmes

    Efficient Solution of Minimum Cost Flow Problems for Large-scale Transportation Networks

    Get PDF
    With the rapid advance of information technology in the transportation industry, of which intermodal transportation is one of the most important subfields, the scale and dimension of problem sizes and datasets is rising significantly. This trend raises the need for study on improving the efficiency, profitability and level of competitiveness of intermodal transportation networks while exploiting the rich information of big data related to these networks. Therefore, this dissertation aims to investigate intermodal transportation network design problems, especially practical optimization problems, and to develop more realistic and effective models and solution approaches that will assist network operators and/or decision makers of the intermodal transportation system. This dissertation focuses on developing a novel strategy for solving the Minimum Cost Flow (MCF) problem for large-scale network design problems by adopting a divide-and-conquer policy during the optimization process. The main contribution is the development of an agglomerative clustering based tiling strategy to significantly reduce the computational and peak memory consumption of the MCF model for large-scale networks. The tiling strategy is supported by the regional-division theorem and -approximation regional-division theorem that are proposed and proved in this dissertation. The region-division theorem is a sufficient condition to exactly guarantee the consistency between the local MCF solution of each sub-network obtained by the aforementioned tiling strategy and the global MCF solution of the whole network. Furthermore, the -approximation region-division theorem provides worst-case bounds, so that the practical approximation MCF solution closely approximates the optimal solution in terms of its optimal value. A series of experiments are performed to evaluate the utility of the proposed approach of solving the large-scale MCF problem. The results indicate that the proposed approach is beneficial to save the execution time and peak memory consumption in large-scale MCF problems under different circumstances

    On High-Performance Benders-Decomposition-Based Exact Methods with Application to Mixed-Integer and Stochastic Problems

    Get PDF
    RÉSUMÉ : La programmation stochastique en nombres entiers (SIP) combine la difficulté de l’incertitude et de la non-convexité et constitue une catégorie de problèmes extrêmement difficiles à résoudre. La résolution efficace des problèmes SIP est d’une grande importance en raison de leur vaste applicabilité. Par conséquent, l’intérêt principal de cette dissertation porte sur les méthodes de résolution pour les SIP. Nous considérons les SIP en deux étapes et présentons plusieurs algorithmes de décomposition améliorés pour les résoudre. Notre objectif principal est de développer de nouveaux schémas de décomposition et plusieurs techniques pour améliorer les méthodes de décomposition classiques, pouvant conduire à résoudre optimalement divers problèmes SIP. Dans le premier essai de cette thèse, nous présentons une revue de littérature actualisée sur l’algorithme de décomposition de Benders. Nous fournissons une taxonomie des améliorations algorithmiques et des stratégies d’accélération de cet algorithme pour synthétiser la littérature et pour identifier les lacunes, les tendances et les directions de recherche potentielles. En outre, nous discutons de l’utilisation de la décomposition de Benders pour développer une (méta- )heuristique efficace, décrire les limites de l’algorithme classique et présenter des extensions permettant son application à un plus large éventail de problèmes. Ensuite, nous développons diverses techniques pour surmonter plusieurs des principaux inconvénients de l’algorithme de décomposition de Benders. Nous proposons l’utilisation de plans de coupe, de décomposition partielle, d’heuristiques, de coupes plus fortes, de réductions et de stratégies de démarrage à chaud pour pallier les difficultés numériques dues aux instabilités, aux inefficacités primales, aux faibles coupes d’optimalité ou de réalisabilité, et à la faible relaxation linéaire. Nous testons les stratégies proposées sur des instances de référence de problèmes de conception de réseau stochastique. Des expériences numériques illustrent l’efficacité des techniques proposées. Dans le troisième essai de cette thèse, nous proposons une nouvelle approche de décomposition appelée méthode de décomposition primale-duale. Le développement de cette méthode est fondé sur une reformulation spécifique des sous-problèmes de Benders, où des copies locales des variables maîtresses sont introduites, puis relâchées dans la fonction objective. Nous montrons que la méthode proposée atténue significativement les inefficacités primales et duales de la méthode de décomposition de Benders et qu’elle est étroitement liée à la méthode de décomposition duale lagrangienne. Les résultats de calcul sur divers problèmes SIP montrent la supériorité de cette méthode par rapport aux méthodes classiques de décomposition. Enfin, nous étudions la parallélisation de la méthode de décomposition de Benders pour étendre ses performances numériques à des instances plus larges des problèmes SIP. Les variantes parallèles disponibles de cette méthode appliquent une synchronisation rigide entre les processeurs maître et esclave. De ce fait, elles souffrent d’un important déséquilibre de charge lorsqu’elles sont appliquées aux problèmes SIP. Cela est dû à un problème maître difficile qui provoque un important déséquilibre entre processeur et charge de travail. Nous proposons une méthode Benders parallèle asynchrone dans un cadre de type branche-et-coupe. L’assouplissement des exigences de synchronisation entraine des problèmes de convergence et d’efficacité divers auxquels nous répondons en introduisant plusieurs techniques d’accélération et de recherche. Les résultats indiquent que notre algorithme atteint des taux d’accélération plus élevés que les méthodes synchronisées conventionnelles et qu’il est plus rapide de plusieurs ordres de grandeur que CPLEX 12.7.----------ABSTRACT : Stochastic integer programming (SIP) combines the difficulty of uncertainty and non-convexity, and constitutes a class of extremely challenging problems to solve. Efficiently solving SIP problems is of high importance due to their vast applicability. Therefore, the primary focus of this dissertation is on solution methods for SIPs. We consider two-stage SIPs and present several enhanced decomposition algorithms for solving them. Our main goal is to develop new decomposition schemes and several acceleration techniques to enhance the classical decomposition methods, which can lead to efficiently solving various SIP problems to optimality. In the first essay of this dissertation, we present a state-of-the-art survey of the Benders decomposition algorithm. We provide a taxonomy of the algorithmic enhancements and the acceleration strategies of this algorithm to synthesize the literature, and to identify shortcomings, trends and potential research directions. In addition, we discuss the use of Benders decomposition to develop efficient (meta-)heuristics, describe the limitations of the classical algorithm, and present extensions enabling its application to a broader range of problems. Next, we develop various techniques to overcome some of the main shortfalls of the Benders decomposition algorithm. We propose the use of cutting planes, partial decomposition, heuristics, stronger cuts, and warm-start strategies to alleviate the numerical challenges arising from instabilities, primal inefficiencies, weak optimality/feasibility cuts, and weak linear relaxation. We test the proposed strategies with benchmark instances from stochastic network design problems. Numerical experiments illustrate the computational efficiency of the proposed techniques. In the third essay of this dissertation, we propose a new and high-performance decomposition approach, called Benders dual decomposition method. The development of this method is based on a specific reformulation of the Benders subproblems, where local copies of the master variables are introduced and then priced out into the objective function. We show that the proposed method significantly alleviates the primal and dual shortfalls of the Benders decomposition method and it is closely related to the Lagrangian dual decomposition method. Computational results on various SIP problems show the superiority of this method compared to the classical decomposition methods as well as CPLEX 12.7. Finally, we study parallelization of the Benders decomposition method. The available parallel variants of this method implement a rigid synchronization among the master and slave processors. Thus, it suffers from significant load imbalance when applied to the SIP problems. This is mainly due to having a hard mixed-integer master problem that can take hours to be optimized. We thus propose an asynchronous parallel Benders method in a branchand- cut framework. However, relaxing the synchronization requirements entails convergence and various efficiency problems which we address them by introducing several acceleration techniques and search strategies. In particular, we propose the use of artificial subproblems, cut generation, cut aggregation, cut management, and cut propagation. The results indicate that our algorithm reaches higher speedup rates compared to the conventional synchronized methods and it is several orders of magnitude faster than CPLEX 12.7

    Lidar-based scene understanding for autonomous driving using deep learning

    Get PDF
    With over 1.35 million fatalities related to traffic accidents worldwide, autonomous driving was foreseen at the beginning of this century as a feasible solution to improve security in our roads. Nevertheless, it is meant to disrupt our transportation paradigm, allowing to reduce congestion, pollution, and costs, while increasing the accessibility, efficiency, and reliability of the transportation for both people and goods. Although some advances have gradually been transferred into commercial vehicles in the way of Advanced Driving Assistance Systems (ADAS) such as adaptive cruise control, blind spot detection or automatic parking, however, the technology is far from mature. A full understanding of the scene is actually needed so that allowing the vehicles to be aware of the surroundings, knowing the existing elements of the scene, as well as their motion, intentions and interactions. In this PhD dissertation, we explore new approaches for understanding driving scenes from 3D LiDAR point clouds by using Deep Learning methods. To this end, in Part I we analyze the scene from a static perspective using independent frames to detect the neighboring vehicles. Next, in Part II we develop new ways for understanding the dynamics of the scene. Finally, in Part III we apply all the developed methods to accomplish higher level challenges such as segmenting moving obstacles while obtaining their rigid motion vector over the ground. More specifically, in Chapter 2 we develop a 3D vehicle detection pipeline based on a multi-branch deep-learning architecture and propose a Front (FR-V) and a Bird’s Eye view (BE-V) as 2D representations of the 3D point cloud to serve as input for training our models. Later on, in Chapter 3 we apply and further test this method on two real uses-cases, for pre-filtering moving obstacles while creating maps to better localize ourselves on subsequent days, as well as for vehicle tracking. From the dynamic perspective, in Chapter 4 we learn from the 3D point cloud a novel dynamic feature that resembles optical flow from RGB images. For that, we develop a new approach to leverage RGB optical flow as pseudo ground truth for training purposes but allowing the use of only 3D LiDAR data at inference time. Additionally, in Chapter 5 we explore the benefits of combining classification and regression learning problems to face the optical flow estimation task in a joint coarse-and-fine manner. Lastly, in Chapter 6 we gather the previous methods and demonstrate that with these independent tasks we can guide the learning of higher challenging problems such as segmentation and motion estimation of moving vehicles from our own moving perspective.Con más de 1,35 millones de muertes por accidentes de tráfico en el mundo, a principios de siglo se predijo que la conducción autónoma sería una solución viable para mejorar la seguridad en nuestras carreteras. Además la conducción autónoma está destinada a cambiar nuestros paradigmas de transporte, permitiendo reducir la congestión del tráfico, la contaminación y el coste, a la vez que aumentando la accesibilidad, la eficiencia y confiabilidad del transporte tanto de personas como de mercancías. Aunque algunos avances, como el control de crucero adaptativo, la detección de puntos ciegos o el estacionamiento automático, se han transferido gradualmente a vehículos comerciales en la forma de los Sistemas Avanzados de Asistencia a la Conducción (ADAS), la tecnología aún no ha alcanzado el suficiente grado de madurez. Se necesita una comprensión completa de la escena para que los vehículos puedan entender el entorno, detectando los elementos presentes, así como su movimiento, intenciones e interacciones. En la presente tesis doctoral, exploramos nuevos enfoques para comprender escenarios de conducción utilizando nubes de puntos en 3D capturadas con sensores LiDAR, para lo cual empleamos métodos de aprendizaje profundo. Con este fin, en la Parte I analizamos la escena desde una perspectiva estática para detectar vehículos. A continuación, en la Parte II, desarrollamos nuevas formas de entender las dinámicas del entorno. Finalmente, en la Parte III aplicamos los métodos previamente desarrollados para lograr desafíos de nivel superior, como segmentar obstáculos dinámicos a la vez que estimamos su vector de movimiento sobre el suelo. Específicamente, en el Capítulo 2 detectamos vehículos en 3D creando una arquitectura de aprendizaje profundo de dos ramas y proponemos una vista frontal (FR-V) y una vista de pájaro (BE-V) como representaciones 2D de la nube de puntos 3D que sirven como entrada para entrenar nuestros modelos. Más adelante, en el Capítulo 3 aplicamos y probamos aún más este método en dos casos de uso reales, tanto para filtrar obstáculos en movimiento previamente a la creación de mapas sobre los que poder localizarnos mejor en los días posteriores, como para el seguimiento de vehículos. Desde la perspectiva dinámica, en el Capítulo 4 aprendemos de la nube de puntos en 3D una característica dinámica novedosa que se asemeja al flujo óptico sobre imágenes RGB. Para ello, desarrollamos un nuevo enfoque que aprovecha el flujo óptico RGB como pseudo muestras reales para entrenamiento, usando solo information 3D durante la inferencia. Además, en el Capítulo 5 exploramos los beneficios de combinar los aprendizajes de problemas de clasificación y regresión para la tarea de estimación de flujo óptico de manera conjunta. Por último, en el Capítulo 6 reunimos los métodos anteriores y demostramos que con estas tareas independientes podemos guiar el aprendizaje de problemas de más alto nivel, como la segmentación y estimación del movimiento de vehículos desde nuestra propia perspectivaAmb més d’1,35 milions de morts per accidents de trànsit al món, a principis de segle es va predir que la conducció autònoma es convertiria en una solució viable per millorar la seguretat a les nostres carreteres. D’altra banda, la conducció autònoma està destinada a canviar els paradigmes del transport, fent possible així reduir la densitat del trànsit, la contaminació i el cost, alhora que augmentant l’accessibilitat, l’eficiència i la confiança del transport tant de persones com de mercaderies. Encara que alguns avenços, com el control de creuer adaptatiu, la detecció de punts cecs o l’estacionament automàtic, s’han transferit gradualment a vehicles comercials en forma de Sistemes Avançats d’Assistència a la Conducció (ADAS), la tecnologia encara no ha arribat a aconseguir el grau suficient de maduresa. És necessària, doncs, una total comprensió de l’escena de manera que els vehicles puguin entendre l’entorn, detectant els elements presents, així com el seu moviment, intencions i interaccions. A la present tesi doctoral, explorem nous enfocaments per tal de comprendre les diferents escenes de conducció utilitzant núvols de punts en 3D capturats amb sensors LiDAR, mitjançant l’ús de mètodes d’aprenentatge profund. Amb aquest objectiu, a la Part I analitzem l’escena des d’una perspectiva estàtica per a detectar vehicles. A continuació, a la Part II, desenvolupem noves formes d’entendre les dinàmiques de l’entorn. Finalment, a la Part III apliquem els mètodes prèviament desenvolupats per a aconseguir desafiaments d’un nivell superior, com, per exemple, segmentar obstacles dinàmics al mateix temps que estimem el seu vector de moviment respecte al terra. Concretament, al Capítol 2 detectem vehicles en 3D creant una arquitectura d’aprenentatge profund amb dues branques, i proposem una vista frontal (FR-V) i una vista d’ocell (BE-V) com a representacions 2D del núvol de punts 3D que serveixen com a punt de partida per entrenar els nostres models. Més endavant, al Capítol 3 apliquem i provem de nou aquest mètode en dos casos d’ús reals, tant per filtrar obstacles en moviment prèviament a la creació de mapes en els quals poder localitzar-nos millor en dies posteriors, com per dur a terme el seguiment de vehicles. Des de la perspectiva dinàmica, al Capítol 4 aprenem una nova característica dinàmica del núvol de punts en 3D que s’assembla al flux òptic sobre imatges RGB. Per a fer-ho, desenvolupem un nou enfocament que aprofita el flux òptic RGB com pseudo mostres reals per a entrenament, utilitzant només informació 3D durant la inferència. Després, al Capítol 5 explorem els beneficis que s’obtenen de combinar els aprenentatges de problemes de classificació i regressió per la tasca d’estimació de flux òptic de manera conjunta. Finalment, al Capítol 6 posem en comú els mètodes anteriors i demostrem que mitjançant aquests processos independents podem abordar l’aprenentatge de problemes més complexos, com la segmentació i estimació del moviment de vehicles des de la nostra pròpia perspectiva
    • …
    corecore