337 research outputs found

    Autonomy and Intelligence in the Computing Continuum: Challenges, Enablers, and Future Directions for Orchestration

    Full text link
    Future AI applications require performance, reliability and privacy that the existing, cloud-dependant system architectures cannot provide. In this article, we study orchestration in the device-edge-cloud continuum, and focus on AI for edge, that is, the AI methods used in resource orchestration. We claim that to support the constantly growing requirements of intelligent applications in the device-edge-cloud computing continuum, resource orchestration needs to embrace edge AI and emphasize local autonomy and intelligence. To justify the claim, we provide a general definition for continuum orchestration, and look at how current and emerging orchestration paradigms are suitable for the computing continuum. We describe certain major emerging research themes that may affect future orchestration, and provide an early vision of an orchestration paradigm that embraces those research themes. Finally, we survey current key edge AI methods and look at how they may contribute into fulfilling the vision of future continuum orchestration.Comment: 50 pages, 8 figures (Revised content in all sections, added figures and new section

    A Comprehensive Survey of Multiagent Reinforcement Learning

    Full text link

    Deep multiagent reinforcement learning: challenges and directions

    Get PDF
    This paper surveys the field of deep multiagent reinforcement learning (RL). The combination of deep neural networks with RL has gained increased traction in recent years and is slowly shifting the focus from single-agent to multiagent environments. Dealing with multiple agents is inherently more complex as (a) the future rewards depend on multiple players' joint actions and (b) the computational complexity increases. We present the most common multiagent problem representations and their main challenges, and identify five research areas that address one or more of these challenges: centralised training and decentralised execution, opponent modelling, communication, efficient coordination, and reward shaping. We find that many computational studies rely on unrealistic assumptions or are not generalisable to other settings; they struggle to overcome the curse of dimensionality or nonstationarity. Approaches from psychology and sociology capture promising relevant behaviours, such as communication and coordination, to help agents achieve better performance in multiagent settings. We suggest that, for multiagent RL to be successful, future research should address these challenges with an interdisciplinary approach to open up new possibilities in multiagent RL.Algorithms and the Foundations of Software technolog

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Many-agent Reinforcement Learning

    Get PDF
    Multi-agent reinforcement learning (RL) solves the problem of how each agent should behave optimally in a stochastic environment in which multiple agents are learning simultaneously. It is an interdisciplinary domain with a long history that lies in the joint area of psychology, control theory, game theory, reinforcement learning, and deep learning. Following the remarkable success of the AlphaGO series in single-agent RL, 2019 was a booming year that witnessed significant advances in multi-agent RL techniques; impressive breakthroughs have been made on developing AIs that outperform humans on many challenging tasks, especially multi-player video games. Nonetheless, one of the key challenges of multi-agent RL techniques is the scalability; it is still non-trivial to design efficient learning algorithms that can solve tasks including far more than two agents (N≫2N \gg 2), which I name by \emph{many-agent reinforcement learning} (MARL\footnote{I use the world of ``MARL" to denote multi-agent reinforcement learning with a particular focus on the cases of many agents; otherwise, it is denoted as ``Multi-Agent RL" by default.}) problems. In this thesis, I contribute to tackling MARL problems from four aspects. Firstly, I offer a self-contained overview of multi-agent RL techniques from a game-theoretical perspective. This overview fills the research gap that most of the existing work either fails to cover the recent advances since 2010 or does not pay adequate attention to game theory, which I believe is the cornerstone to solving many-agent learning problems. Secondly, I develop a tractable policy evaluation algorithm -- αα\alpha^\alpha-Rank -- in many-agent systems. The critical advantage of αα\alpha^\alpha-Rank is that it can compute the solution concept of α\alpha-Rank tractably in multi-player general-sum games with no need to store the entire pay-off matrix. This is in contrast to classic solution concepts such as Nash equilibrium which is known to be PPADPPAD-hard in even two-player cases. αα\alpha^\alpha-Rank allows us, for the first time, to practically conduct large-scale multi-agent evaluations. Thirdly, I introduce a scalable policy learning algorithm -- mean-field MARL -- in many-agent systems. The mean-field MARL method takes advantage of the mean-field approximation from physics, and it is the first provably convergent algorithm that tries to break the curse of dimensionality for MARL tasks. With the proposed algorithm, I report the first result of solving the Ising model and multi-agent battle games through a MARL approach. Fourthly, I investigate the many-agent learning problem in open-ended meta-games (i.e., the game of a game in the policy space). Specifically, I focus on modelling the behavioural diversity in meta-games, and developing algorithms that guarantee to enlarge diversity during training. The proposed metric based on determinantal point processes serves as the first mathematically rigorous definition for diversity. Importantly, the diversity-aware learning algorithms beat the existing state-of-the-art game solvers in terms of exploitability by a large margin. On top of the algorithmic developments, I also contribute two real-world applications of MARL techniques. Specifically, I demonstrate the great potential of applying MARL to study the emergent population dynamics in nature, and model diverse and realistic interactions in autonomous driving. Both applications embody the prospect that MARL techniques could achieve huge impacts in the real physical world, outside of purely video games

    On the Intersection of Communication and Machine Learning

    Get PDF
    The intersection of communication and machine learning is attracting increasing interest from both communities. On the one hand, the development of modern communication system brings large amount of data and high performance requirement, which challenges the classic analytical-derivation based study philosophy and encourages the researchers to explore the data driven method, such as machine learning, to solve the problems with high complexity and large scale. On the other hand, the usage of distributed machine learning introduces the communication cost as one of the basic considerations for the design of machine learning algorithm and system.In this thesis, we first explore the application of machine learning on one of the classic problems in wireless network, resource allocation, for heterogeneous millimeter wave networks when the environment is with high dynamics. We address the practical concerns by providing the efficient online and distributed framework. In the second part, some sampling based communication-efficient distributed learning algorithm is proposed. We utilize the trade-off between the local computation and the total communication cost and propose the algorithm with good theoretical bound. In more detail, this thesis makes the following contributionsWe introduced an reinforcement learning framework to solve the resource allocation problems in heterogeneous millimeter wave network. The large state/action space is decomposed according to the topology of the network and solved by an efficient distribtued message passing algorithm. We further speed up the inference process by an online updating process.We proposed the distributed coreset based boosting framework. An efficient coreset construction algorithm is proposed based on the prior knowledge provided by clustering. Then the coreset is integrated with boosting with improved convergence rate. We extend the proposed boosting framework to the distributed setting, where the communication cost is reduced by the good approximation of coreset.We propose an selective sampling framework to construct a subset of sample that could effectively represent the model space. Based on the prior distribution of the model space or the large amount of samples from model space, we derive a computational efficient method to construct such subset by minimizing the error of classifying a classifier

    Multi‑Agent Foraging: state‑of‑the‑art and research challenges

    Get PDF
    International audienceThe foraging task is one of the canonical testbeds for cooperative robotics, in which a collection of robots has to search and transport objects to specific storage point(s). In this paper, we investigate the Multi-Agent Foraging (MAF) problem from several perspectives that we analyze in depth. First, we define the Foraging Problem according to literature definitions. Then we analyze previously proposed taxonomies, and propose a new foraging taxonomy characterized by four principal axes: Environment, Collective, Strategy and Simulation, summarize related foraging works and classify them through our new foraging taxonomy. Then, we discuss the real implementation of MAF and present a comparison between some related foraging works considering important features that show extensibility, reliability and scalability of MAF systems. Finally we present and discuss recent trends in this field, emphasizing the various challenges that could enhance the existing MAF solutions and make them realistic
    • …
    corecore