14 research outputs found

    Tracing Analytic Ray Curves for Light and Sound Propagation in Non-Linear Media

    Get PDF
    The physical world consists of spatially varying media, such as the atmosphere and the ocean, in which light and sound propagates along non-linear trajectories. This presents a challenge to existing ray-tracing based methods, which are widely adopted to simulate propagation due to their efficiency and flexibility, but assume linear rays. We present a novel algorithm that traces analytic ray curves computed from local media gradients, and utilizes the closed-form solutions of both the intersections of the ray curves with planar surfaces, and the travel distance. By constructing an adaptive unstructured mesh, our algorithm is able to model general media profiles that vary in three dimensions with complex boundaries consisting of terrains and other scene objects such as buildings. Our analytic ray curve tracer with the adaptive mesh improves the efficiency considerably over prior methods. We highlight the algorithm's application on simulation of visual and sound propagation in outdoor scenes

    Ray tracing algorithms for zonal radiative heat transfer

    Full text link
    Целью работы является повышение точности и быстродействия методов трассировки лучей и учета наличия препятствий на пути излучения в системах со сложной геометрией. Выполнено сравнительное исследование методов трассировки лучей для расчета зонального теплообмена, а также разработаны программы, реализующие трассировку лучей известными методами. Показано, что стандартный метод трассировки сквозь неравномерную сетку, как наиболее удобную структуру данных для лучистого теплообмена, приводит к проблеме пропадания лучей. Разработан робастный метод трассировки лучей, решающий данную проблему и обладающий немного лучшим быстродействием. Разработан новый алгоритм пересечения прямой с выпуклым многогранником. Алгоритм дает решение проблемы пересечения при неизвестном списке граней многогранника, которая часто возникает в задачах САПР и геометрических вычислениях в реальном времени. Все описываемые алгоритмы реализованы в виде программ и готовы к использованию. Полученные результаты могут применяться в моделировании теплообмена, компьютерной графике, САПР и визуализации результатов расчета.The aim of this work is increasing accuracy and performance of ray tracing and obstructions handling in systems of complex geometry. Known ray tracing methods are compared in context of radiative heat transfer. Methods of ray tracing and radiative view factors evaluation are implemented in computer programs. It is shown that the standard ray tracing with non uniform mesh (the most suitable geometrical structure for radiative heat transfer) fails with loss of some rays in geometry. Robust ray tracing algorithm is developed that solves the problem. The algorithm is also slightly faster than the standard one. New ray – convex polyhedron intersection algorithm is developed. It solves the intersection problem if polyhedron faces are unknown – usual case in CAD and real-time calculations. All described algorithms are implemented as computer programs and are ready to use. Obtained investigation results can be applied in modeling of radiative heat transfer, computer graphics, CAD and scientific visualization.Программа развития УрФУ на 2013 год (п.1.2.2.3

    Efficient Light and Sound Propagation in Refractive Media with Analytic Ray Curve Tracer

    Get PDF
    Refractive media is ubiquitous in the natural world, and light and sound propagation in refractive media leads to characteristic visual and acoustic phenomena. Those phenomena are critical for engineering applications to simulate with high accuracy requirements, and they can add to the perceived realism and sense of immersion for training and entertainment applications. Existing methods can be roughly divided into two categories with regard to their handling of propagation in refractive media; first category of methods makes simplifying assumption about the media or entirely excludes the consideration of refraction in order to achieve efficient propagation, while the second category of methods accommodates refraction but remains computationally expensive. In this dissertation, we present algorithms that achieve efficient and scalable propagation simulation of light and sound in refractive media, handling fully general media and scene configurations. Our approaches are based on ray tracing, which traditionally assumes homogeneous media and rectilinear rays. We replace the rectilinear rays with analytic ray curves as tracing primitives, which represent closed-form trajectory solutions based on assumptions of a locally constant media gradient. For general media profiles, the media can be spatially decomposed into explicit or implicit cells, within which the media gradient can be assumed constant, leading to an analytic ray path within that cell. Ray traversal of the media can therefore proceed in segments of ray curves. The first source of speedup comes from the fact that for smooth media, a locally constant media gradient assumption tends to stay valid for a larger area than the assumption of a locally constant media property. The second source of speedup is the constant-cost intersection computation of the analytic ray curves with planar surfaces. The third source of speedup comes from making the size of each cell and therefore each ray curve segment adaptive to the magnitude of media gradient. Interactions with boundary surfaces in the scene can be efficiently handled within this framework in two alternative approaches. For static scenes, boundary surfaces can be embedded into the explicit mesh of tetrahedral cells, and the mesh can be traversed and the embedded surfaces intersected with by the analytic ray curve in a unified manner. For dynamic scenes, implicit cells are used for media traversal, and boundary surface intersections can be handled separately by constructing hierarchical acceleration structures adapted from rectilinear ray tracer. The efficient handling of boundary surfaces is the fourth source of speedup of our propagation path computation. We demonstrate over two orders-of-magnitude performance improvement of our analytic ray tracing algorithms over prior methods for refractive light and sound propagation. We additionally present a complete sound-propagation simulation solution that matches the path computation efficiency achieved by the ray curve tracer. We develop efficient pressure computation algorithm based on analytic evaluations and combine our algorithm with the Gaussian beam for fast acoustic field computation. We validate the accuracy of the simulation results on published benchmarks, and we show the application of our algorithms on complex and general three-dimensional outdoor scenes. Our algorithms enable simulation scenarios that are simply not feasible with existing methods, and they have the potential of being extended and complementing other propagation methods for capability beyond handling refractive media.Doctor of Philosoph

    Reconstruction Volumique de Résultats de Simulation à Base Chimère

    Get PDF
    La simulation numérique des écoulements est une étape essentielle de la conception des turbines à gaz équipant les hélicoptères. La recherche permanente de la performance a conduit à des géométries de turbines très complexes et il devient de plus en plus difficile de modéliser des grilles de simulation qui épousent parfaitement la CAO des moteurs. La technique chimère permet de s affranchir des contraintes de recollement parfait des différentes grilles en autorisant leur chevauchement. Cependant elle soulève de nouveaux problèmes lors de la phase de post-traitement, lorsqu il s agit d exploiter les résultats de simulation afin de faire de nouveaux calculs ou de les visualiser, parce que les outils usuels ne sont pas adaptés à ces configurations particulières. Dans le cadre des deux premiers projets du programme MOSART du pôle de compétitivité Aerospace Valley, respectivement MACAO et OSMOSES, nous avons travaillé en collaboration avec l entreprise Turbomeca à la conception d une méthode de reconstruction volumique afin de traiter les résultats de simulations à base chimère. Nous avons ainsi proposé une méthode innovante permettant de reconstruire une partition de l espace de simulation exempte de chevauchement entre grilles. La nouvelle partition conserve le maximum de propriétés des grilles d origine et assure en tout point la conformité aux bords. La complexité théorique est linéaire avec la taille des grilles d origine et nous permet d obtenir des temps de traitement de l ordre de la seconde pour des grilles de plusieurs centaines de milliers de mailles. Le principal intérêt de ce travail est de rendre exploitables les résultats de simulations à base chimère par les outils de post-traitement, qu il s agisse d outils maison ou des nombreux logiciels commerciaux ou OpenSource disponibles, condition indispensable pour l adoption de la méthode chimère par les bureaux d études.Computationnal fluid dynamics is an essential step in gas turbine modelling. Continuous optimization of turbines has led to sophisticated geometries, which raises severe issues for the design of adapted simulation grids. The chimera technique aims at relaxing geometry matching constraints by allowing grids overlap. However, post-processing of simulation results performed over chimera grids raises new issues because usual tools are not tuned for this particular geometricconfigurations. In the framework of the MOSART programme of the world competitiveness cluster Aerospace Valley, we have been working in collaboration with Turbomeca in order to develop a technique for the volumetric reconstruction of chimerasimulation results. We propose an innovative method that allows us to build a collection of non-overlapping grids while preserving the main properties of the former simulation grids and featuring boundary conforming property everywhere.The theorical complexity of our algorithms has proved to be linear in the size of the former grids and leads to computation times of a few seconds for grids of hundreds of thousands of cells. The main impact of this work leads in the possibility of using any post-processing tool, including a large number of OpenSource solutions, for post-processing chimera simulation results, which is a mandatory condition for the wide acceptance of this method by industry actors.PAU-BU Sciences (644452103) / SudocSudocFranceF

    Multi-angle valve seat machining: experimental analysis and numerical modelling

    Get PDF
    Modern automotive manufacturers operate in highly competitive markets, heavily influenced by Government regulation and ever more environmentally conscious consumers. Modern high-temperature, high-pressure engines that use high hardness multi-angle valve seats are an attractive environmental option, but one that manufacturers find requires more advanced materials and tighter geometric tolerances to maintain engine performance.Tool manufacturers meet these increasingly tougher demands by using, higher hardness cutting materials such as polycrystalline cubic boron nitride (pcBN), that on paper, promise to wear at a lower rate, require less coolant and deliver tighter tolerances than their carbide counterparts.The low brittle fracture toughness of pcBN makes tools that use it vulnerable to minute chipping. A review of literature for this work pointed to no clear answer to this problem, although suggestions range from manufacturing defects, dynamic and flexibility problems with the production line machinery and fixtures, and radial imbalances in the cutting loads.This work set about experimentally investigating those potential explanations, coming to the conclusion that the high radial imbalance of the cutting loads is responsible for pcBN cutting insert failure during multi-angle valve seat machining, and that by simply relocating the cutting inserts around the multi angle cutting tool, the imbalance can be reduced, thus extending the life of the cutting inserts.It is not always easy to predict the imbalance due to the multiple flexibilities in the system, and simulating such a system in 3D with all its associated cutting phenomena such as friction, thermal expansion, chip flow and shearing, would call upon extraordinary computational power and extremely precise experimental inputs to reduce cumulative error.This thesis proves that such a 3D simulation can be made, that runs in exceptionally short durations compared to traditional methods, by making a number of simplifications.MSC Marc was used to host the simulation, with a parametric script written in Python responsible for generating the model geometry and cutter layout. A Fortran program was developed that is called upon by Marc to calculate the required cutting load outputs and generate new workpiece meshes as material is removed.</div

    Accelerating Ray Tracing using Constrained Tetrahedralizations

    No full text
    Tracing a ray through a scene and finding the closest intersection with the scene geometry is a fundamental operation in computer graphics. During the last two decades, significant efforts have been made to accelerate this operation, with interactive ray tracing as one of the major driving forces. At the heart of a fast method for intersecting a scene with a ray lies the acceleration structure. Many different acceleration structures exist, but research has focused almost exclusively on a few well-tried and well-established techniques: regular and hierarchical grids, bounding volume hierarchies and kd-trees. Spectacular advances have been made, which have contributed significantly to making interactive ray tracing a possibility. However, despite the success of these acceleration structures, several problems remain open. Handling deforming and dynamic geometry still poses significant challenges, and the local vs. global complexity of acceleration structures is still not entirely understood. One therefore wonders whether other acceleration structures, that leave the beaten path of efficient grids, bounding volume hierarchies and kd-trees, can provide viable alternatives. Next to computer graphics, the ray shooting problem is also studied in computational geometry. Ray shooting queries against a large collection of polyhedra are answered by tracing the ray through a simplicial complex such as a constrained tetrahedralization. This is a well-known technique, see e.g. the chapter Ray shooting and lines in space by Pellegrini in Handbook of Discrete and Computational Geometry. However, relevant work in computational geometry is usually theoretical, and practical implementations and experimental results are typically not available. In this work we explore the idea of accelerating the operation of intersecting a scene with a ray using constrained tetrahedralizations. This is illustrated in figure 1. A constrained tetrahedralization of a scene is a tetrahedralization that respects the faces of the scene geometry. The closest intersection of a ray with a scene is found by traversing this tetrahedralization along the ray, one tetrahedron at a time, until a constrained face is encountered. We show that constrained tetrahedralizations are a viable alternative to state-of-the-art acceleration structures, such as kd-trees, and that constrained tetrahedralizations have a number of interesting and unique properties that set them apart from traditional acceleration structures. Constrained tetrahedralizations are not hierarchical yet adaptive; the complexity of traversing them is a function of local geometric complexity rather than global geometric complexity; constrained tetrahedralizations support deforming geometry without any effort (see figure 2); and they have the potential to unify several data structures currently used in global illumination. Although constrained tetrahedralizations are not a silver bullet, and although they are in general not yet faster than the most optimized kd-trees, constrained tetrahedralizations offer several new perspectives on acceleration structures for ray tracing and deserve attention.status: publishe
    corecore