3,785 research outputs found

    Acceleration of Coarse Grain Molecular Dynamics on GPU Architectures

    Get PDF
    Coarse grain (CG) molecular models have been proposed to simulate complex sys- tems with lower computational overheads and longer timescales with respect to atom- istic level models. However, their acceleration on parallel architectures such as Graphic Processing Units (GPU) presents original challenges that must be carefully evaluated. The objective of this work is to characterize the impact of CG model features on parallel simulation performance. To achieve this, we implemented a GPU-accelerated version of a CG molecular dynamics simulator, to which we applied specic optimizations for CG models, such as dedicated data structures to handle dierent bead type interac- tions, obtaining a maximum speed-up of 14 on the NVIDIA GTX480 GPU with Fermi architecture. We provide a complete characterization and evaluation of algorithmic and simulated system features of CG models impacting the achievable speed-up and accuracy of results, using three dierent GPU architectures as case studie

    GPU optimizations for a production molecular docking code

    Full text link
    Thesis (M.Sc.Eng.) -- Boston UniversityScientists have always felt the desire to perform computationally intensive tasks that surpass the capabilities of conventional single core computers. As a result of this trend, Graphics Processing Units (GPUs) have come to be increasingly used for general computation in scientific research. This field of GPU acceleration is now a vast and mature discipline. Molecular docking, the modeling of the interactions between two molecules, is a particularly computationally intensive task that has been the subject of research for many years. It is a critical simulation tool used for the screening of protein compounds for drug design and in research of the nature of life itself. The PIPER molecular docking program was previously accelerated using GPUs, achieving a notable speedup over conventional single core implementation. Since its original release the development of the CPU based PIPER has not ceased, and it is now a mature and fast parallel code. The GPU version, however, still contains many potential points for optimization. In the current work, we present a new version of GPU PIPER that attains a 3.3x speedup over a parallel MPI version of PIPER running on an 8 core machine and using the optimized Intel Math Kernel Library. We achieve this speedup by optimizing existing kernels for modern GPU architectures and migrating critical code segments to the GPU. In particular, we both improve the runtime of the filtering and scoring stages by more than an order of magnitude, and move all molecular data permanently to the GPU to improve data locality. This new speedup is obtained while retaining a computational accuracy virtually identical to the CPU based version. We also demonstrate that, due to the algorithmic dependencies of the PIPER algorithm on the 3D Fast Fourier Transform, our GPU PIPER will likely remain proportionally faster than equivalent CPU based implementations, and with little room for further optimizations. This new GPU accelerated version of PIPER is integrated as part of the ClusPro molecular docking and analysis server at Boston University. ClusPro has over 4000 registered users and more than 50000 jobs run over the past 4 years

    Computational Physics on Graphics Processing Units

    Full text link
    The use of graphics processing units for scientific computations is an emerging strategy that can significantly speed up various different algorithms. In this review, we discuss advances made in the field of computational physics, focusing on classical molecular dynamics, and on quantum simulations for electronic structure calculations using the density functional theory, wave function techniques, and quantum field theory.Comment: Proceedings of the 11th International Conference, PARA 2012, Helsinki, Finland, June 10-13, 201

    Hardware Accelerated Molecular Docking: A Survey

    Get PDF

    Improving drug discovery using a neural networks based parallel scoring function

    Get PDF
    Virtual Screening (VS) methods can considerably aid clinical research, predicting how ligands interact with drug targets. Most VS methods suppose a unique binding site for the target, but it has been demonstrated that diverse ligands interact with unrelated parts of the target and many VS methods do not take into account this relevant fact. This problem is circumvented by a novel VS methodology named BINDSURF that scans the whole protein surface to find new hotspots, where ligands might potentially interact with, and which is implemented in massively parallel Graphics Processing Units, allowing fast processing of large ligand databases. BINDSURF can thus be used in drug discovery, drug design, drug repurposing and therefore helps considerably in clinical research. However, the accuracy of most VS methods is constrained by limitations in the scoring function that describes biomolecular interactions, and even nowadays these uncertainties are not completely understood. In order to solve this problem, we propose a novel approach where neural networks are trained with databases of known active (drugs) and inactive compounds, and later used to improve VS predictions.This work has been jointly supported by the Fundación Séneca (Agencia Regional de Ciencia y Tecnología de la Región de Murcia) under grant 15290/PI/2010, by the Spanish MINECO and the European Commission FEDER funds under grants TIN2009-14475-C04 and TIN2012-31345, and by the Catholic University of Murcia (UCAM) under grant PMAFI/26/12. This work was partially supported by the computing facilities of Extremadura Research Centre for Advanced Technologies (CETA-CIEMAT), funded by the European Regional Development Fund (ERDF). CETA-CIEMAT belongs to CIEMAT and the Government of Spain
    corecore