429 research outputs found

    High-Level Synthesis Hardware Design for FPGA-Based Accelerators: Models, Methodologies, and Frameworks

    Get PDF
    Hardware accelerators based on field programmable gate array (FPGA) and system on chip (SoC) devices have gained attention in recent years. One of the main reasons is that these devices contain reconfigurable logic, which makes them feasible for boosting the performance of applications. High-level synthesis (HLS) tools facilitate the creation of FPGA code from a high level of abstraction using different directives to obtain an optimized hardware design based on performance metrics. However, the complexity of the design space depends on different factors such as the number of directives used in the source code, the available resources in the device, and the clock frequency. Design space exploration (DSE) techniques comprise the evaluation of multiple implementations with different combinations of directives to obtain a design with a good compromise between different metrics. This paper presents a survey of models, methodologies, and frameworks proposed for metric estimation, FPGA-based DSE, and power consumption estimation on FPGA/SoC. The main features, limitations, and trade-offs of these approaches are described. We also present the integration of existing models and frameworks in diverse research areas and identify the different challenges to be addressed

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Performance engineering of data-intensive applications

    Get PDF
    Data-intensive programs deal with big chunks of data and often contain compute-intensive characteristics. Among various HPC application domains, big data analytics, machine learning and the more recent deep-learning models are well-known data-intensive applications. An efficient design of such applications demands extensive knowledge of the target hardware and software, particularly the memory/cache hierarchy and the data communication among threads/processes. Such a requirement makes code development an arduous task, as inappropriate data structures and algorithm design may result in superfluous runtime, let alone hardware incompatibilities while porting the code to other platforms. In this dissertation, we introduce a set of tools and methods for the performance engineering of parallel data-intensive programs. We start with performance profiling to gain insights on thread communications and relevant code optimizations. Then, by narrowing down our scope to deep-learning applications, we introduce our tools for enhancing the performance portability and scalability of convolutional neural networks (ConvNet) at inference and training phases. Our first contribution is a novel performance-profiling method to unveil potential communication bottlenecks caused by data-access patterns and thread interactions. Our findings show that the data shared between a pair of threads should be reused with a reasonably short intervals to preserve data locality, yet existing profilers neglect them and mainly report the communication volume. We propose new hardware-independent metrics to characterize thread communication and provide suggestions for applying appropriate optimizations on a specific code region. Our experiments show that applying relevant optimizations improves the performance in Rodinia benchmarks by up to 56%. For the next contribution, we developed a framework for automatic generation of efficient and performance-portable convolution kernels, including Winograd convolutions, for various GPU platforms. We employed a synergy of meta-programming, symbolic execution, and auto-tuning. The results demonstrate efficient kernels generated through an automated optimization pipeline with runtimes close to vendor deep-learning libraries, and the minimum required programming effort confirms the performance portability of our approach. Furthermore, our symbolic execution method exploits repetitive patterns in Winograd convolutions, enabling us to reduce the number of arithmetic operations by up to 62% without compromising the numerical stability. Lastly, we investigate possible methods to scale the performance of ConvNets in training and inference phases. Our specialized training platform equipped with a novel topology-aware network pruning algorithm enables rapid training, neural architecture search, and network compression. Thus, an AI model training can be easily scaled to a multitude of compute nodes, leading to faster model design with less operating costs. Furthermore, the network compression component scales a ConvNet model down by removing redundant layers, preparing the model for a more pertinent deployment. Altogether, this work demonstrates the necessity and shows the benefit of performance engineering and parallel programming methods in accelerating emerging data-intensive workloads. With the help of the proposed tools and techniques, we pinpoint data communication bottlenecks and achieve performance portability and scalability in data-intensive applications

    NATSA: A Near-Data Processing Accelerator for Time Series Analysis

    Get PDF
    Time series analysis is a key technique for extracting and predicting events in domains as diverse as epidemiology, genomics, neuroscience, environmental sciences, economics, and more. Matrix profile, the state-of-the-art algorithm to perform time series analysis, computes the most similar subsequence for a given query subsequence within a sliced time series. Matrix profile has low arithmetic intensity, but it typically operates on large amounts of time series data. In current computing systems, this data needs to be moved between the off-chip memory units and the on-chip computation units for performing matrix profile. This causes a major performance bottleneck as data movement is extremely costly in terms of both execution time and energy. In this work, we present NATSA, the first Near-Data Processing accelerator for time series analysis. The key idea is to exploit modern 3D-stacked High Bandwidth Memory (HBM) to enable efficient and fast specialized matrix profile computation near memory, where time series data resides. NATSA provides three key benefits: 1) quickly computing the matrix profile for a wide range of applications by building specialized energy-efficient floating-point arithmetic processing units close to HBM, 2) improving the energy efficiency and execution time by reducing the need for data movement over slow and energy-hungry buses between the computation units and the memory units, and 3) analyzing time series data at scale by exploiting low-latency, high-bandwidth, and energy-efficient memory access provided by HBM. Our experimental evaluation shows that NATSA improves performance by up to 14.2x (9.9x on average) and reduces energy by up to 27.2x (19.4x on average), over the state-of-the-art multi-core implementation. NATSA also improves performance by 6.3x and reduces energy by 10.2x over a general-purpose NDP platform with 64 in-order cores.Comment: To appear in the 38th IEEE International Conference on Computer Design (ICCD 2020

    Simulation methodologies for mobile GPUs

    Get PDF
    GPUs critically rely on a complex system software stack comprising kernel- and user-space drivers and JIT compilers. Yet, existing GPU simulators typically abstract away details of the software stack and GPU instruction set. Partly, this is because GPU vendors rarely release sufficient information about their latest GPU products. However, this is also due to the lack of an integrated CPU-GPU simulation framework, which is complete and powerful enough to drive the complex GPU software environment. This has led to a situation where research on GPU architectures and compilers is largely based on outdated or greatly simplified architectures and software stacks, undermining the validity of the generated results. Making the situation even more dire, existing GPU simulation efforts are concentrated around desktop GPUs, making infrastructure for modelling mobile GPUs virtually non-existent, despite their surging importance in the GPU market. Still, mobile GPU designers are faced with the challenge of evaluating design alternatives involving hundreds of architectural configuration options and micro-architectural improvements under tight time-to-market constraints, to which currently employed design flows involving detailed, but slow simulations are not well suited. In this thesis we develop a full-system simulation environment for a mobile platform, which enables users to run a complete and unmodified software stack for a state-of-the-art mobile Arm CPU and Mali Bifrost GPU powered device, achieving 100\% architectural accuracy across all available toolchains. We demonstrate the capability of our GPU simulation framework through a number of case studies exploring modern, mobile GPU applications, and optimize them using functional simulation statistics, unavailable with other approaches or hardware. Furthermore, we develop a trace-based performance model, allowing architects to rapidly model GPU configurations in early design space exploration
    • …
    corecore