7,755 research outputs found

    Learning Opposites with Evolving Rules

    Full text link
    The idea of opposition-based learning was introduced 10 years ago. Since then a noteworthy group of researchers has used some notions of oppositeness to improve existing optimization and learning algorithms. Among others, evolutionary algorithms, reinforcement agents, and neural networks have been reportedly extended into their opposition-based version to become faster and/or more accurate. However, most works still use a simple notion of opposites, namely linear (or type- I) opposition, that for each x[a,b]x\in[a,b] assigns its opposite as x˘I=a+bx\breve{x}_I=a+b-x. This, of course, is a very naive estimate of the actual or true (non-linear) opposite x˘II\breve{x}_{II}, which has been called type-II opposite in literature. In absence of any knowledge about a function y=f(x)y=f(\mathbf{x}) that we need to approximate, there seems to be no alternative to the naivety of type-I opposition if one intents to utilize oppositional concepts. But the question is if we can receive some level of accuracy increase and time savings by using the naive opposite estimate x˘I\breve{x}_I according to all reports in literature, what would we be able to gain, in terms of even higher accuracies and more reduction in computational complexity, if we would generate and employ true opposites? This work introduces an approach to approximate type-II opposites using evolving fuzzy rules when we first perform opposition mining. We show with multiple examples that learning true opposites is possible when we mine the opposites from the training data to subsequently approximate x˘II=f(x,y)\breve{x}_{II}=f(\mathbf{x},y).Comment: Accepted for publication in The 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2015), August 2-5, 2015, Istanbul, Turke

    Equation-free modeling of evolving diseases: Coarse-grained computations with individual-based models

    Full text link
    We demonstrate how direct simulation of stochastic, individual-based models can be combined with continuum numerical analysis techniques to study the dynamics of evolving diseases. % Sidestepping the necessity of obtaining explicit population-level models, the approach analyzes the (unavailable in closed form) `coarse' macroscopic equations, estimating the necessary quantities through appropriately initialized, short `bursts' of individual-based dynamic simulation. % We illustrate this approach by analyzing a stochastic and discrete model for the evolution of disease agents caused by point mutations within individual hosts. % Building up from classical SIR and SIRS models, our example uses a one-dimensional lattice for variant space, and assumes a finite number of individuals. % Macroscopic computational tasks enabled through this approach include stationary state computation, coarse projective integration, parametric continuation and stability analysis.Comment: 16 pages, 8 figure
    corecore