2,566 research outputs found

    Agent-Based Computational Economics

    Get PDF
    Agent-based computational economics (ACE) is the computational study of economies modeled as evolving systems of autonomous interacting agents. Starting from initial conditions, specified by the modeler, the computational economy evolves over time as its constituent agents repeatedly interact with each other and learn from these interactions. ACE is therefore a bottom-up culture-dish approach to the study of economic systems. This study discusses the key characteristics and goals of the ACE methodology. Eight currently active research areas are highlighted for concrete illustration. Potential advantages and disadvantages of the ACE methodology are considered, along with open questions and possible directions for future research.Agent-based computational economics; Autonomous agents; Interaction networks; Learning; Evolution; Mechanism design; Computational economics; Object-oriented programming.

    On Partially Controlled Multi-Agent Systems

    Full text link
    Motivated by the control theoretic distinction between controllable and uncontrollable events, we distinguish between two types of agents within a multi-agent system: controllable agents, which are directly controlled by the system's designer, and uncontrollable agents, which are not under the designer's direct control. We refer to such systems as partially controlled multi-agent systems, and we investigate how one might influence the behavior of the uncontrolled agents through appropriate design of the controlled agents. In particular, we wish to understand which problems are naturally described in these terms, what methods can be applied to influence the uncontrollable agents, the effectiveness of such methods, and whether similar methods work across different domains. Using a game-theoretic framework, this paper studies the design of partially controlled multi-agent systems in two contexts: in one context, the uncontrollable agents are expected utility maximizers, while in the other they are reinforcement learners. We suggest different techniques for controlling agents' behavior in each domain, assess their success, and examine their relationship.Comment: See http://www.jair.org/ for any accompanying file

    Society-in-the-Loop: Programming the Algorithmic Social Contract

    Full text link
    Recent rapid advances in Artificial Intelligence (AI) and Machine Learning have raised many questions about the regulatory and governance mechanisms for autonomous machines. Many commentators, scholars, and policy-makers now call for ensuring that algorithms governing our lives are transparent, fair, and accountable. Here, I propose a conceptual framework for the regulation of AI and algorithmic systems. I argue that we need tools to program, debug and maintain an algorithmic social contract, a pact between various human stakeholders, mediated by machines. To achieve this, we can adapt the concept of human-in-the-loop (HITL) from the fields of modeling and simulation, and interactive machine learning. In particular, I propose an agenda I call society-in-the-loop (SITL), which combines the HITL control paradigm with mechanisms for negotiating the values of various stakeholders affected by AI systems, and monitoring compliance with the agreement. In short, `SITL = HITL + Social Contract.'Comment: (in press), Ethics of Information Technology, 201

    Learning-based social coordination to improve safety and robustness of cooperative autonomous vehicles in mixed traffic

    Full text link
    It is expected that autonomous vehicles(AVs) and heterogeneous human-driven vehicles(HVs) will coexist on the same road. The safety and reliability of AVs will depend on their social awareness and their ability to engage in complex social interactions in a socially accepted manner. However, AVs are still inefficient in terms of cooperating with HVs and struggle to understand and adapt to human behavior, which is particularly challenging in mixed autonomy. In a road shared by AVs and HVs, the social preferences or individual traits of HVs are unknown to the AVs and different from AVs, which are expected to follow a policy, HVs are particularly difficult to forecast since they do not necessarily follow a stationary policy. To address these challenges, we frame the mixed-autonomy problem as a multi-agent reinforcement learning (MARL) problem and propose an approach that allows AVs to learn the decision-making of HVs implicitly from experience, account for all vehicles' interests, and safely adapt to other traffic situations. In contrast with existing works, we quantify AVs' social preferences and propose a distributed reward structure that introduces altruism into their decision-making process, allowing the altruistic AVs to learn to establish coalitions and influence the behavior of HVs.Comment: arXiv admin note: substantial text overlap with arXiv:2202.0088

    Beyond Rewards: a Hierarchical Perspective on Offline Multiagent Behavioral Analysis

    Full text link
    Each year, expert-level performance is attained in increasingly-complex multiagent domains, notable examples including Go, Poker, and StarCraft II. This rapid progression is accompanied by a commensurate need to better understand how such agents attain this performance, to enable their safe deployment, identify limitations, and reveal potential means of improving them. In this paper we take a step back from performance-focused multiagent learning, and instead turn our attention towards agent behavior analysis. We introduce a model-agnostic method for discovery of behavior clusters in multiagent domains, using variational inference to learn a hierarchy of behaviors at the joint and local agent levels. Our framework makes no assumption about agents' underlying learning algorithms, does not require access to their latent states or policies, and is trained using only offline observational data. We illustrate the effectiveness of our method for enabling the coupled understanding of behaviors at the joint and local agent level, detection of behavior changepoints throughout training, discovery of core behavioral concepts, demonstrate the approach's scalability to a high-dimensional multiagent MuJoCo control domain, and also illustrate that the approach can disentangle previously-trained policies in OpenAI's hide-and-seek domain

    Efficient XAI Techniques: A Taxonomic Survey

    Full text link
    Recently, there has been a growing demand for the deployment of Explainable Artificial Intelligence (XAI) algorithms in real-world applications. However, traditional XAI methods typically suffer from a high computational complexity problem, which discourages the deployment of real-time systems to meet the time-demanding requirements of real-world scenarios. Although many approaches have been proposed to improve the efficiency of XAI methods, a comprehensive understanding of the achievements and challenges is still needed. To this end, in this paper we provide a review of efficient XAI. Specifically, we categorize existing techniques of XAI acceleration into efficient non-amortized and efficient amortized methods. The efficient non-amortized methods focus on data-centric or model-centric acceleration upon each individual instance. In contrast, amortized methods focus on learning a unified distribution of model explanations, following the predictive, generative, or reinforcement frameworks, to rapidly derive multiple model explanations. We also analyze the limitations of an efficient XAI pipeline from the perspectives of the training phase, the deployment phase, and the use scenarios. Finally, we summarize the challenges of deploying XAI acceleration methods to real-world scenarios, overcoming the trade-off between faithfulness and efficiency, and the selection of different acceleration methods.Comment: 15 pages, 3 figure
    • …
    corecore