238 research outputs found

    FPGA-based data partitioning

    Get PDF
    Implementing parallel operators in multi-core machines often involves a data partitioning step that divides the data into cache-size blocks and arranges them so to allow concurrent threads to process them in parallel. Data partitioning is expensive, in some cases up to 90% of the cost of, e.g., a parallel hash join. In this paper we explore the use of an FPGA to accelerate data partitioning. We do so in the context of new hybrid architectures where the FPGA is located as a co-processor residing on a socket and with coherent access to the same memory as the CPU residing on the other socket. Such an architecture reduces data transfer overheads between the CPU and the FPGA, enabling hybrid operator execution where the partitioning happens on the FPGA and the build and probe phases of a join happen on the CPU. Our experiments demonstrate that FPGA-based partitioning is significantly faster and more robust than CPU-based partitioning. The results open interesting options as FPGAs are gradually integrated tighter with the CPU

    Smith-Waterman Protein Search with OpenCL on an FPGA

    Get PDF
    The well-known Smith-Waterman (SW) algorithm is a high-sensitivity method for local alignments. Unfortunately, SW is expensive in terms of both execution time and memory usage, which makes it impractical in many scenarios. Previous research has shown that massively parallel architectures such as GPUs and FPGAs are able to mitigate the computational problems and achieve impressive speedups. In this paper we explore SW acceleration on an FPGA with OpenCL. We efficiently exploit data and thread-level parallelism on an Altera Stratix V FPGA, obtaining up to 39 GCUPS with less than 25 watt of power consumption.Facultad de Informátic

    FPGA acceleration of DNA sequence alignment: design analysis and optimization

    Get PDF
    Existing FPGA accelerators for short read mapping often fail to utilize the complete biological information in sequencing data for simple hardware design, leading to missed or incorrect alignment. In this work, we propose a runtime reconfigurable alignment pipeline that considers all information in sequencing data for the biologically accurate acceleration of short read mapping. We focus our efforts on accelerating two string matching techniques: FM-index and the Smith-Waterman algorithm with the affine-gap model which are commonly used in short read mapping. We further optimize the FPGA hardware using a design analyzer and merger to improve alignment performance. The contributions of this work are as follows. 1. We accelerate the exact-match and mismatch alignment by leveraging the FM-index technique. We optimize memory access by compressing the data structure and interleaving the access with multiple short reads. The FM-index hardware also considers complete information in the read data to maximize accuracy. 2. We propose a seed-and-extend model to accelerate alignment with indels. The FM-index hardware is extended to support the seeding stage while a Smith-Waterman implementation with the affine-gap model is developed on FPGA for the extension stage. This model can improve the efficiency of indel alignment with comparable accuracy versus state-of-the-art software. 3. We present an approach for merging multiple FPGA designs into a single hardware design, so that multiple place-and-route tasks can be replaced by a single task to speed up functional evaluation of designs. We first experiment with this approach to demonstrate its feasibility for different designs. Then we apply this approach to optimize one of the proposed FPGA aligners for better alignment performance.Open Acces

    Emerging accelerator platforms for data centers

    Get PDF
    CPU and GPU platforms may not be the best options for many emerging compute patterns, which led to a new breed of emerging accelerator platforms. This article gives a comprehensive overview with a focus on commercial platforms
    • …
    corecore