1,414 research outputs found

    GPUs as Storage System Accelerators

    Full text link
    Massively multicore processors, such as Graphics Processing Units (GPUs), provide, at a comparable price, a one order of magnitude higher peak performance than traditional CPUs. This drop in the cost of computation, as any order-of-magnitude drop in the cost per unit of performance for a class of system components, triggers the opportunity to redesign systems and to explore new ways to engineer them to recalibrate the cost-to-performance relation. This project explores the feasibility of harnessing GPUs' computational power to improve the performance, reliability, or security of distributed storage systems. In this context, we present the design of a storage system prototype that uses GPU offloading to accelerate a number of computationally intensive primitives based on hashing, and introduce techniques to efficiently leverage the processing power of GPUs. We evaluate the performance of this prototype under two configurations: as a content addressable storage system that facilitates online similarity detection between successive versions of the same file and as a traditional system that uses hashing to preserve data integrity. Further, we evaluate the impact of offloading to the GPU on competing applications' performance. Our results show that this technique can bring tangible performance gains without negatively impacting the performance of concurrently running applications.Comment: IEEE Transactions on Parallel and Distributed Systems, 201

    Mixing multi-core CPUs and GPUs for scientific simulation software

    Get PDF
    Recent technological and economic developments have led to widespread availability of multi-core CPUs and specialist accelerator processors such as graphical processing units (GPUs). The accelerated computational performance possible from these devices can be very high for some applications paradigms. Software languages and systems such as NVIDIA's CUDA and Khronos consortium's open compute language (OpenCL) support a number of individual parallel application programming paradigms. To scale up the performance of some complex systems simulations, a hybrid of multi-core CPUs for coarse-grained parallelism and very many core GPUs for data parallelism is necessary. We describe our use of hybrid applica- tions using threading approaches and multi-core CPUs to control independent GPU devices. We present speed-up data and discuss multi-threading software issues for the applications level programmer and o er some suggested areas for language development and integration between coarse-grained and ne-grained multi-thread systems. We discuss results from three common simulation algorithmic areas including: partial di erential equations; graph cluster metric calculations and random number generation. We report on programming experiences and selected performance for these algorithms on: single and multiple GPUs; multi-core CPUs; a CellBE; and using OpenCL. We discuss programmer usability issues and the outlook and trends in multi-core programming for scienti c applications developers

    A General Framework for Accelerating Swarm Intelligence Algorithms on FPGAs, GPUs and Multi-core CPUs

    Get PDF
    Swarm intelligence algorithms (SIAs) have demonstrated excellent performance when solving optimization problems including many real-world problems. However, because of their expensive computational cost for some complex problems, SIAs need to be accelerated effectively for better performance. This paper presents a high-performance general framework to accelerate SIAs (FASI). Different from the previous work which accelerate SIAs through enhancing the parallelization only, FASI considers both the memory architectures of hardware platforms and the dataflow of SIAs, and it reschedules the framework of SIAs as a converged dataflow to improve the memory access efficiency. FASI achieves higher acceleration ability by matching the algorithm framework to the hardware architectures. We also design deep optimized structures of the parallelization and convergence of FASI based on the characteristics of specific hardware platforms. We take the quantum behaved particle swarm optimization algorithm (QPSO) as a case to evaluate FASI. The results show that FASI improves the throughput of SIAs and provides better performance through optimizing the hardware implementations. In our experiments, FASI achieves a maximum of 290.7Mbit/s throughput which is higher than several existing systems, and FASI on FPGAs achieves a better speedup than that on GPUs and multi-core CPUs. FASI is up to 123 times and not less than 1.45 times faster in terms of optimization time on Xilinx Kintex Ultrascale xcku040 when compares to Intel Core i7-6700 CPU/ NVIDIA GTX1080 GPU. Finally, we compare the differences of deploying FASI on hardware platforms and provide some guidelines for promoting the acceleration performance according to the hardware architectures

    Accelerating the Rate of Astronomical Discovery with GPU-Powered Clusters

    Full text link
    In recent years, the Graphics Processing Unit (GPU) has emerged as a low-cost alternative for high performance computing, enabling impressive speed-ups for a range of scientific computing applications. Early adopters in astronomy are already benefiting in adapting their codes to take advantage of the GPU's massively parallel processing paradigm. I give an introduction to, and overview of, the use of GPUs in astronomy to date, highlighting the adoption and application trends from the first ~100 GPU-related publications in astronomy. I discuss the opportunities and challenges of utilising GPU computing clusters, such as the new Australian GPU supercomputer, gSTAR, for accelerating the rate of astronomical discovery.Comment: To appear in the proceedings of ADASS XXI, ed. P.Ballester and D.Egret, ASP Conf. Se

    General Purpose Computing on Graphics Processing Units for Accelerated Deep Learning in Neural Networks

    Get PDF
    Graphics processing units (GPUs) contain a significant number of cores relative to central processing units (CPUs), allowing them to handle high levels of parallelization in multithreading. A general-purpose GPU (GPGPU) is a GPU that has its threads and memory repurposed on a software level to leverage the multithreading made possible by the GPU’s hardware, and thus is an extremely strong platform for intense computing – there is no hardware difference between GPUs and GPGPUs. Deep learning is one such example of intense computing that is best implemented on a GPGPU, as its hardware structure of a grid of blocks, each containing processing threads, can handle the immense number of necessary calculations in parallel. A convolutional neural network (CNN) created for financial data analysis shows this advantage in the runtime of the training and testing of a neural network

    Parallel 3D Fast Wavelet Transform comparison on CPUs and GPUs

    Get PDF
    We present in this paper several implementations of the 3D Fast Wavelet Transform (3D-FWT) on multicore CPUs and manycore GPUs. On the GPU side, we focus on CUDA and OpenCL programming to develop methods for an efficient mapping on manycores. On multicore CPUs, OpenMP and Pthreads are used as counterparts to maximize parallelism, and renowned techniques like tiling and blocking are exploited to optimize the use of memory. We evaluate these proposals and make a comparison between a new Fermi Tesla C2050 and an Intel Core 2 QuadQ6700. Speedups of the CUDA version are the best results, improving the execution times on CPU, ranging from 5.3x to 7.4x for different image sizes, and up to 81 times faster when communications are neglected. Meanwhile, OpenCL obtains solid gains which range from 2x factors on small frame sizes to 3x factors on larger ones

    Hardware and Software Optimizations for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges, and the Road Ahead

    Get PDF
    Currently, Machine Learning (ML) is becoming ubiquitous in everyday life. Deep Learning (DL) is already present in many applications ranging from computer vision for medicine to autonomous driving of modern cars as well as other sectors in security, healthcare, and finance. However, to achieve impressive performance, these algorithms employ very deep networks, requiring a significant computational power, both during the training and inference time. A single inference of a DL model may require billions of multiply-and-accumulated operations, making the DL extremely compute-and energy-hungry. In a scenario where several sophisticated algorithms need to be executed with limited energy and low latency, the need for cost-effective hardware platforms capable of implementing energy-efficient DL execution arises. This paper first introduces the key properties of two brain-inspired models like Deep Neural Network (DNN), and Spiking Neural Network (SNN), and then analyzes techniques to produce efficient and high-performance designs. This work summarizes and compares the works for four leading platforms for the execution of algorithms such as CPU, GPU, FPGA and ASIC describing the main solutions of the state-of-the-art, giving much prominence to the last two solutions since they offer greater design flexibility and bear the potential of high energy-efficiency, especially for the inference process. In addition to hardware solutions, this paper discusses some of the important security issues that these DNN and SNN models may have during their execution, and offers a comprehensive section on benchmarking, explaining how to assess the quality of different networks and hardware systems designed for them

    Datacenter Design for Future Cloud Radio Access Network.

    Full text link
    Cloud radio access network (C-RAN), an emerging cloud service that combines the traditional radio access network (RAN) with cloud computing technology, has been proposed as a solution to handle the growing energy consumption and cost of the traditional RAN. Through aggregating baseband units (BBUs) in a centralized cloud datacenter, C-RAN reduces energy and cost, and improves wireless throughput and quality of service. However, designing a datacenter for C-RAN has not yet been studied. In this dissertation, I investigate how a datacenter for C-RAN BBUs should be built on commodity servers. I first design WiBench, an open-source benchmark suite containing the key signal processing kernels of many mainstream wireless protocols, and study its characteristics. The characterization study shows that there is abundant data level parallelism (DLP) and thread level parallelism (TLP). Based on this result, I then develop high performance software implementations of C-RAN BBU kernels in C++ and CUDA for both CPUs and GPUs. In addition, I generalize the GPU parallelization techniques of the Turbo decoder to the trellis algorithms, an important family of algorithms that are widely used in data compression and channel coding. Then I evaluate the performance of commodity CPU servers and GPU servers. The study shows that the datacenter with GPU servers can meet the LTE standard throughput with 4× to 16× fewer machines than with CPU servers. A further energy and cost analysis show that GPU servers can save on average 13× more energy and 6× more cost. Thus, I propose the C-RAN datacenter be built using GPUs as a server platform. Next I study resource management techniques to handle the temporal and spatial traffic imbalance in a C-RAN datacenter. I propose a “hill-climbing” power management that combines powering-off GPUs and DVFS to match the temporal C-RAN traffic pattern. Under a practical traffic model, this technique saves 40% of the BBU energy in a GPU-based C-RAN datacenter. For spatial traffic imbalance, I propose three workload distribution techniques to improve load balance and throughput. Among all three techniques, pipelining packets has the most throughput improvement at 10% and 16% for balanced and unbalanced loads, respectively.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120825/1/qizheng_1.pd
    corecore