599 research outputs found

    RPPM : Rapid Performance Prediction of Multithreaded workloads on multicore processors

    Get PDF
    Analytical performance modeling is a useful complement to detailed cycle-level simulation to quickly explore the design space in an early design stage. Mechanistic analytical modeling is particularly interesting as it provides deep insight and does not require expensive offline profiling as empirical modeling. Previous work in mechanistic analytical modeling, unfortunately, is limited to single-threaded applications running on single-core processors. This work proposes RPPM, a mechanistic analytical performance model for multi-threaded applications on multicore hardware. RPPM collects microarchitecture-independent characteristics of a multi-threaded workload to predict performance on a previously unseen multicore architecture. The profile needs to be collected only once to predict a range of processor architectures. We evaluate RPPM's accuracy against simulation and report a performance prediction error of 11.2% on average (23% max). We demonstrate RPPM's usefulness for conducting design space exploration experiments as well as for analyzing parallel application performance

    BarrierPoint: sampled simulation of multi-threaded applications

    Get PDF
    Sampling is a well-known technique to speed up architectural simulation of long-running workloads while maintaining accurate performance predictions. A number of sampling techniques have recently been developed that extend well- known single-threaded techniques to allow sampled simulation of multi-threaded applications. Unfortunately, prior work is limited to non-synchronizing applications (e.g., server throughput workloads); requires the functional simulation of the entire application using a detailed cache hierarchy which limits the overall simulation speedup potential; leads to different units of work across different processor architectures which complicates performance analysis; or, requires massive machine resources to achieve reasonable simulation speedups. In this work, we propose BarrierPoint, a sampling methodology to accelerate simulation by leveraging globally synchronizing barriers in multi-threaded applications. BarrierPoint collects microarchitecture-independent code and data signatures to determine the most representative inter-barrier regions, called barrierpoints. BarrierPoint estimates total application execution time (and other performance metrics of interest) through detailed simulation of these barrierpoints only, leading to substantial simulation speedups. Barrierpoints can be simulated in parallel, use fewer simulation resources, and define fixed units of work to be used in performance comparisons across processor architectures. Our evaluation of BarrierPoint using NPB and Parsec benchmarks reports average simulation speedups of 24.7x (and up to 866.6x) with an average simulation error of 0.9% and 2.9% at most. On average, BarrierPoint reduces the number of simulation machine resources needed by 78x

    Performance analysis methods for understanding scaling bottlenecks in multi-threaded applications

    Get PDF
    In dit proefschrift stellen we drie nieuwe methodes voor om de prestatie van meerdradige programma's te analyseren. Onze eerste methode, criticality stacks, is bruikbaar voor het analyseren van onevenwicht tussen draden. Om deze stacks te construeren stellen we een nieuwe criticaliteitsmetriek voor, die de uitvoeringstijd van een applicatie opsplitst in een deel voor iedere draad. Hoe groter dit deel is voor een draad, hoe kritischer deze draad is voor de applicatie. De tweede methode, bottle graphs, stelt iedere draad van een meerdradig programma voor als een rechthoek in een grafiek. De hoogte van de rechthoek wordt berekend door middel van onze criticaliteitsmetriek, en de breedte stelt het parallellisme van een draad voor. Rechthoeken die bovenaan in de grafiek zitten, als het ware in de hals van de fles, hebben een beperkt parallellisme, waardoor we ze beschouwen als “bottlenecks” voor de applicatie. Onze derde methode, speedup stacks, toont de bereikte speedup van een applicatie en de verschillende componenten die speedup beperken in een gestapelde grafiek. De intuïtie achter dit concept is dat door het reduceren van de invloed van een bepaalde component, de speedup van een applicatie proportioneel toeneemt met de grootte van die component in de stapel

    TaskPoint: sampled simulation of task-based programs

    Get PDF
    Sampled simulation is a mature technique for reducing simulation time of single-threaded programs, but it is not directly applicable to simulation of multi-threaded architectures. Recent multi-threaded sampling techniques assume that the workload assigned to each thread does not change across multiple executions of a program. This assumption does not hold for dynamically scheduled task-based programming models. Task-based programming models allow the programmer to specify program segments as tasks which are instantiated many times and scheduled dynamically to available threads. Due to system noise and variation in scheduling decisions, two consecutive executions on the same machine typically result in different instruction streams processed by each thread. In this paper, we propose TaskPoint, a sampled simulation technique for dynamically scheduled task-based programs. We leverage task instances as sampling units and simulate only a fraction of all task instances in detail. Between detailed simulation intervals we employ a novel fast-forward mechanism for dynamically scheduled programs. We evaluate the proposed technique on a set of 19 task-based parallel benchmarks and two different architectures. Compared to detailed simulation, TaskPoint accelerates architectural simulation with 64 simulated threads by an average factor of 19.1 at an average error of 1.8% and a maximum error of 15.0%.This work has been supported by the Spanish Government (Severo Ochoa grants SEV2015-0493, SEV-2011-00067), the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P), Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), the RoMoL ERC Advanced Grant (GA 321253), the European HiPEAC Network of Excellence and the Mont-Blanc project (EU-FP7-610402 and EU-H2020-671697). M. Moreto has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship JCI-2012-15047. M. Casas is supported by the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of the EUFP7 (contract 2013BP B 00243). T.Grass has been partially supported by the AGAUR of the Generalitat de Catalunya (grant 2013FI B 0058).Peer ReviewedPostprint (author's final draft

    Accelerating Reconfigurable Financial Computing

    Get PDF
    This thesis proposes novel approaches to the design, optimisation, and management of reconfigurable computer accelerators for financial computing. There are three contributions. First, we propose novel reconfigurable designs for derivative pricing using both Monte-Carlo and quadrature methods. Such designs involve exploring techniques such as control variate optimisation for Monte-Carlo, and multi-dimensional analysis for quadrature methods. Significant speedups and energy savings are achieved using our Field-Programmable Gate Array (FPGA) designs over both Central Processing Unit (CPU) and Graphical Processing Unit (GPU) designs. Second, we propose a framework for distributing computing tasks on multi-accelerator heterogeneous clusters. In this framework, different computational devices including FPGAs, GPUs and CPUs work collaboratively on the same financial problem based on a dynamic scheduling policy. The trade-off in speed and in energy consumption of different accelerator allocations is investigated. Third, we propose a mixed precision methodology for optimising Monte-Carlo designs, and a reduced precision methodology for optimising quadrature designs. These methodologies enable us to optimise throughput of reconfigurable designs by using datapaths with minimised precision, while maintaining the same accuracy of the results as in the original designs

    Sampled simulation of task-based programs

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksSampled simulation is a mature technique for reducing simulation time of single-threaded programs. Nevertheless, current sampling techniques do not take advantage of other execution models, like task-based execution, to provide both more accurate and faster simulation. Recent multi-threaded sampling techniques assume that the workload assigned to each thread does not change across multiple executions of a program. This assumption does not hold for dynamically scheduled task-based programming models. Task-based programming models allow the programmer to specify program segments as tasks which are instantiated many times and scheduled dynamically to available threads. Due to variation in scheduling decisions, two consecutive executions on the same machine typically result in different instruction streams processed by each thread. In this paper, we propose TaskPoint, a sampled simulation technique for dynamically scheduled task-based programs. We leverage task instances as sampling units and simulate only a fraction of all task instances in detail. Between detailed simulation intervals, we employ a novel fast-forwarding mechanism for dynamically scheduled programs. We evaluate different automatic techniques for clustering task instances and show that DBSCAN clustering combined with analytical performance modeling provides the best trade-off of simulation speed and accuracy. TaskPoint is the first technique combining sampled simulation and analytical modeling and provides a new way to trade off simulation speed and accuracy. Compared to detailed simulation, TaskPoint accelerates architectural simulation with 8 simulated threads by an average factor of 220x at an average error of 0.5 percent and a maximum error of 7.9 percent.Peer ReviewedPostprint (author's final draft

    Speeding up architectural simulation through high-level core abstractions and sampling

    Get PDF

    Hardware thread scheduling algorithms for single-ISA asymmetric CMPs

    Get PDF
    Through the past several decades, based on the Moore's law, the semiconductor industry was doubling the number of transistors on the single chip roughly every eighteen months. For a long time this continuous increase in transistor budget drove the increase in performance as the processors continued to exploit the instruction level parallelism (ILP) of the sequential programs. This pattern hit the wall in the early years of the twentieth century when designing larger and more complex cores became difficult because of the power and complexity reasons. Computer architects responded by integrating many cores on the same die thereby creating Chip Multicore Processors (CMP). In the last decade, the computing technology experienced tremendous developments, Chip Multiprocessors (CMP) expanded from the symmetric and homogeneous to the asymmetric or heterogeneous Multiprocessors. Having cores of different types in a single processor enables optimizing performance, power and energy efficiency for a wider range of workloads. It enables chip designers to employ specialization (that is, we can use each type of core for the type of computation where it delivers the best performance/energy trade-off). The benefits of Asymmetric Chip Multiprocessors (ACMP) are intuitive as it is well known that different workloads have different resource requirements. The CMPs improve the performance of applications by exploiting the Thread Level Parallelism (TLP). Parallel applications relying on multiple threads must be efficiently managed and dispatched for execution if the parallelism is to be properly exploited. Since more and more applications become multi-threaded we expect to find a growing number of threads executing on a machine. Consequently, the operating system will require increasingly larger amounts of CPU time to schedule these threads efficiently. Thus, dynamic thread scheduling techniques are of paramount importance in ACMP designs since they can make or break performance benefits derived from the asymmetric hardware or parallel software. Several thread scheduling methods have been proposed and applied to ACMPs. In this thesis, we first study the state of the art thread scheduling techniques and identify the main reasons limiting the thread level parallelism in an ACMP systems. We propose three novel approaches to schedule and manage threads and exploit thread level parallelism implemented in hardware, instead of perpetuating the trend of performing more complex thread scheduling in the operating system. Our first goal is to improve the performance of an ACMP systems by improving thread scheduling at the hardware level. We also show that the hardware thread scheduling reduces the energy consumption of an ACMP systems by allowing better utilization of the underlying hardware.A través de las últimas décadas, con base en la ley de Moore, la industria de semiconductores duplica el número de transistores en el chip alrededor de una vez cada dieciocho meses. Durante mucho tiempo, este aumento continuo en el número de transistores impulsó el aumento en el rendimiento de los procesadores solo explotando el paralelismo a nivel de instrucción (ILP) y el aumento de la frecuencia de los procesadores, permitiendo un aumento del rendimiento de los programas secuenciales. Este patrón llego a su limite en los primeros años del siglo XX, cuando el diseño de procesadores más grandes y complejos se convirtió en una tareá difícil debido a las debido al consumo requerido. La respuesta a este problema por parte de los arquitectos fue la integración de muchos núcleos en el mismo chip creando así chip multinúcleo Procesadores (CMP). En la última década, la tecnología de la computación experimentado enormes avances, sobre todo el en chip multiprocesadores (CMP) donde se ha pasado de diseños simetricos y homogeneous a sistemas asimétricos y heterogeneous. Tener núcleos de diferentes tipos en un solo procesador permite optimizar el rendimiento, la potencia y la eficiencia energética para una amplia gama de cargas de trabajo. Permite a los diseñadores de chips emplear especialización (es decir, podemos utilizar un tipo de núcleo diferente para distintos tipos de cálculo dependiendo del trade-off respecto del consumo y rendimiento). Los beneficios de la asimétrica chip multiprocesadores (ACMP) son intuitivos, ya que es bien sabido que diferentes cargas de trabajo tienen diferentes necesidades de recursos. Los CMP mejoran el rendimiento de las aplicaciones mediante la explotación del paralelismo a nivel de hilo (TLP). En las aplicaciones paralelas que dependen de múltiples hilos, estos deben ser manejados y enviados para su ejecución, y el paralelismo se debe explotar de manera eficiente. Cada día hay mas aplicaciones multi-hilo, por lo tanto encotraremos un numero mayor de hilos que se estaran ejecutando en la máquina. En consecuencia, el sistema operativo requerirá cantidades cada vez mayores de tiempo de CPU para organizar y ejecutar estos hilos de manera eficiente. Por lo tanto, las técnicas de optimizacion dinámica para la organizacion de la ejecucion de hilos son de suma importancia en los diseños ACMP ya que pueden incrementar o dsiminuir el rendimiento del hardware asimétrico o del software paralelo. Se han propuesto y aplicado a ACMPs varios métodos de organizar y ejecutar los hilos. En esta tesis, primero estudiamos el estado del arte en las técnicas para la gestionar la ejecucion de los hilos y hemos identificado las principales razones que limitan el paralelismo en sistemas ACMP. Proponemos tres nuevos enfoques para programar y gestionar los hilos y explotar el paralelismo a nivel de hardware, en lugar de perpetuar la tendencia actual de dejar esta gestion cada vez maas compleja al sistema operativo. Nuestro primer objetivo es mejorar el rendimiento de un sistema ACMP mediante la mejora en la gestion de los hilos a nivel de hardware. También mostramos que la gestion del los hilos a nivel de hardware reduce el consumo de energía de un sistemas de ACMP al permitir una mejor utilización del hardware subyacente

    Graphite: A Distributed Parallel Simulator for Multicores

    Get PDF
    This paper introduces the open-source Graphite distributed parallel multicore simulator infrastructure. Graphite is designed from the ground up for exploration of future multicore processors containing dozens, hundreds, or even thousands of cores. It provides high performance for fast design space exploration and software development for future processors. Several techniques are used to achieve this performance including: direct execution, multi-machine distribution, analytical modeling, and lax synchronization. Graphite is capable of accelerating simulations by leveraging several machines. It can distribute simulation of an off-the-shelf threaded application across a cluster of commodity Linux machines with no modification to the source code. It does this by providing a single, shared address space and consistent single-process image across machines. Graphite is designed to be a simulation framework, allowing different component models to be easily replaced to either model different architectures or tradeoff accuracy for performance. We evaluate Graphite from a number of perspectives and demonstrate that it can simulate target architectures containing over 1000 cores on ten 8-core servers. Performance scales well as more machines are added with near linear speedup in many cases. Simulation slowdown is as low as 41x versus native execution for some applications. The Graphite infrastructure and existing models will be released as open-source software to allow the community to simulate their own architectures and extend and improve the framework
    corecore