805 research outputs found

    Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric Vehicles

    Get PDF
    The combination of machine learning and heterogeneous embedded platforms enables new potential for developing sophisticated control concepts which are applicable to the field of vehicle dynamics and ADAS. This interdisciplinary work provides enabler solutions -ultimately implementing fast predictions using neural networks (NNs) on field programmable gate arrays (FPGAs) and graphical processing units (GPUs)- while applying them to a challenging application: Torque Vectoring on a multi-electric-motor vehicle for enhanced vehicle dynamics. The foundation motivating this work is provided by discussing multiple domains of the technological context as well as the constraints related to the automotive field, which contrast with the attractiveness of exploiting the capabilities of new embedded platforms to apply advanced control algorithms for complex control problems. In this particular case we target enhanced vehicle dynamics on a multi-motor electric vehicle benefiting from the greater degrees of freedom and controllability offered by such powertrains. Considering the constraints of the application and the implications of the selected multivariable optimization challenge, we propose a NN to provide batch predictions for real-time optimization. This leads to the major contribution of this work: efficient NN implementations on two intrinsically parallel embedded platforms, a GPU and a FPGA, following an analysis of theoretical and practical implications of their different operating paradigms, in order to efficiently harness their computing potential while gaining insight into their peculiarities. The achieved results exceed the expectations and additionally provide a representative illustration of the strengths and weaknesses of each kind of platform. Consequently, having shown the applicability of the proposed solutions, this work contributes valuable enablers also for further developments following similar fundamental principles.Some of the results presented in this work are related to activities within the 3Ccar project, which has received funding from ECSEL Joint Undertaking under grant agreement No. 662192. This Joint Undertaking received support from the European Union’s Horizon 2020 research and innovation programme and Germany, Austria, Czech Republic, Romania, Belgium, United Kingdom, France, Netherlands, Latvia, Finland, Spain, Italy, Lithuania. This work was also partly supported by the project ENABLES3, which received funding from ECSEL Joint Undertaking under grant agreement No. 692455-2

    Adjustment of the electric current in pulsar magnetospheres and origin of subpulse modulation

    Full text link
    The subpulse modulation of pulsar radio emission goes to prove that the plasma flow in the open field line tube breaks into isolated narrow streams. I propose a model which attributes formation of streams to the process of the electric current adjustment in the magnetosphere. A mismatch between the magnetospheric current distribution and the current injected by the polar cap accelerator gives rise to reverse plasma flows in the magnetosphere. The reverse flow shields the electric field in the polar gap and thus shuts up the plasma production process. I assume that a circulating system of streams is formed such that the upward streams are produced in narrow gaps separated by downward streams. The electric drift is small in this model because the potential drop in narrow gaps is small. The gaps have to drift because by the time a downward stream reaches the star surface and shields the electric field, the corresponding gap has to shift. The transverse size of the streams is determined by the condition that the potential drop in the gaps is sufficient for the pair production. This yields the radius of the stream roughly 10% of the polar cap radius, which makes it possible to fit in the observed morphological features such as the "carousel" with 10-20 subbeams and the system of the core - two nested cone beams.Comment: 8 pages, 1 figur

    NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    Get PDF
    © 2016 Cheung, Schultz and Luk.NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation

    Book review: Vitalism revisited

    Get PDF

    Fault-tolerant computer study

    Get PDF
    A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed

    Performance and programmability comparison of the thick control flow architecture and current multicore processors

    Get PDF
    Commercial multicore central processing units (CPU) integrate a number of processor cores on a single chip to support parallel execution of computational tasks. Multicore CPUs can possibly improve performance over single cores for independent parallel tasks nearly linearly as long as sufficient bandwidth is available. Ideal speedup is, however, difficult to achieve when dense intercommunication between the cores or complex memory access patterns is required. This is caused by expensive synchronization and thread switching, and insufficient latency toleration. These facts guide programmers away from straight-forward parallel processing patterns toward complex and error-prone programming techniques. To address these problems, we have introduced the Thick control flow (TCF) Processor Architecture. TCF is an abstraction of parallel computation that combines self-similar threads into computational entities. In this paper, we compare the performance and programmability of an entry-level TCF processor and two Intel Skylake multicore CPUs on commonly used parallel kernels to find out how well our architecture solves these issues that greatly reduce the productivity of parallel software development. Code examples are given and programming experiences recorded

    Athlete activism: advancing socio-political causes at mega sporting events

    Get PDF
    Highly mediated, mega-sporting events provide opportunities for elite athletes to use their prominent status to elicit social change. However, with expectations and policies in place to regulate behaviour that prevents athletes from making political statements, athlete activists face risks. An examination of the 2018 Commonwealth Games highlighted two athletes who used their personal reputation whilst at this highly mediated global sporting event to raise the visibility of societal issues. Through the lens of persona studies, this research examined how these athlete celebrities crafted individualised narratives through internetworked platforms of new and traditional media to demonstrate forms of athlete citizenship. This research illustrates how athletes can become co-creators of the social cause narrative, demonstrating how valuable athletes can be in amplifying the core values of major sporting events by reinforcing a fluid form of intercommunication

    Private Telegraphy: The Path from Private Wires to Subscriber Lines in Victorian Britain

    Get PDF
    In this thesis, I investigate private telegraphy from its rise in the late 1830s to the advent of exchange telephony in the early 1880s. In contrast to public telegraphy where telegrams were transmitted over a shared network infrastructure, private telegraphy was a direct, more immediate form of user-to-user communication delivered over private wires. My objective is to redress a historiographical distortion in the understanding of the Victorian telegraph created by the conflation of the concept of telegraph with telegram, and by the prominence given to the nationalisation of the telegraph industry in 1870 in the discourse of historians like Jeffrey Kieve or Charles Perry, thus obscuring the critical role played by private telegraphy in the history of communication. To begin with, I expose the dichotomy between public and private telegraphy by demonstrating the similarities and rivalry between telegrams and letters. I contend that this rivalry was an important factor behind the nationalisation. The extent to which private telegraphy was distinct from public telegraphy is demonstrated through a comprehensive history of private wires and the first domestic telegraph instruments. I track the development of private wires, from their inception at the hands of users of the telegraph to their assimilation by telephony, and show their versatility for diverse uses. I also reveal how telegraphic intercommunication systems – the so-called Umschalters – were reconfigured to become the Post Office’s first generation of telephone exchanges in the early 1880s. From this novel perspective, I counter the received scholarly view that the Post Office obstructed the expansion of telephony to protect the Crown’s stake in telegraphy. I claim instead that the Post Office exploited the installed base of Umschalters and private wires, by then referred to as subscriber lines, to become an active participant in the nascent telephone industry alongside the private companies, thus accelerating the take-up of exchange telephony
    • …
    corecore