1,176 research outputs found

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Executive Summary

    Get PDF

    2011 Strategic roadmap for Australian research infrastructure

    Get PDF
    The 2011 Roadmap articulates the priority research infrastructure areas of a national scale (capability areas) to further develop Australia’s research capacity and improve innovation and research outcomes over the next five to ten years. The capability areas have been identified through considered analysis of input provided by stakeholders, in conjunction with specialist advice from Expert Working Groups   It is intended the Strategic Framework will provide a high-level policy framework, which will include principles to guide the development of policy advice and the design of programs related to the funding of research infrastructure by the Australian Government. Roadmapping has been identified in the Strategic Framework Discussion Paper as the most appropriate prioritisation mechanism for national, collaborative research infrastructure. The strategic identification of Capability areas through a consultative roadmapping process was also validated in the report of the 2010 NCRIS Evaluation. The 2011 Roadmap is primarily concerned with medium to large-scale research infrastructure. However, any landmark infrastructure (typically involving an investment in excess of $100 million over five years from the Australian Government) requirements identified in this process will be noted. NRIC has also developed a ‘Process to identify and prioritise Australian Government landmark research infrastructure investments’ which is currently under consideration by the government as part of broader deliberations relating to research infrastructure. NRIC will have strategic oversight of the development of the 2011 Roadmap as part of its overall policy view of research infrastructure

    Out of kernel tuning and optimizations for portable large-scale docking experiments on GPUs

    Get PDF
    Virtual screening is an early stage in the drug discovery process that selects the most promising candidates. In the urgent computing scenario, finding a solution in the shortest time frame is critical. Any improvement in the performance of a virtual screening application translates into an increase in the number of candidates evaluated, thereby raising the probability of finding a drug. In this paper, we show how we can improve application throughput using Out-of-kernel optimizations. They use input features, kernel requirements, and architectural features to rearrange the kernel inputs, executing them out of order, to improve the computation efficiency. These optimizations’ implementations are designed on an extreme-scale virtual screening application, named LiGen, that can hinge on CUDA and SYCL kernels to carry out the computation on modern supercomputer nodes. Even if they are tailored to a single application, they might also be of interest for applications that share a similar design pattern. The experimental results show how these optimizations can increase kernel performance by 2 X, respectively, up to 2.2X in CUDA and up to 1.9X, in SYCL. Moreover, the reported speedup can be achieved with the best-proposed parameterization, as shown by the data we collected and reported in this manuscript

    CC*IIE Networking Infrastructure - NSF Award #1440646 Project Description

    Get PDF
    CC*IIE Networking Infrastructure: Accelerating science, translational research, and collaboration at the University of Pittsburgh through the implementation of network upgrades

    EXSCALATE: An Extreme-Scale Virtual Screening Platform for Drug Discovery Targeting Polypharmacology to Fight SARS-CoV-2

    Get PDF
    The social and economic impact of the COVID-19 pandemic demands a reduction of the time required to find a therapeutic cure. In this paper, we describe the EXSCALATE molecular docking platform capable to scale on an entire modern supercomputer for supporting extreme-scale virtual screening campaigns. Such virtual experiments can provide in short time information on which molecules to consider in the next stages of the drug discovery pipeline, and it is a key asset in case of a pandemic. The EXSCALATE platform has been designed to benefit from heterogeneous computation nodes and to reduce scaling issues. In particular, we maximized the accelerators’ usage, minimized the communications between nodes, and aggregated the I/O requests to serve them more efficiently. Moreover, we balanced the computation across the nodes by designing an ad-hoc workflow based on the execution time prediction of each molecule. We deployed the platform on two HPC supercomputers, with a combined computational power of 81 PFLOPS, to evaluate the interaction between 70 billion of small molecules and 15 binding-sites of 12 viral proteins of SARS-CoV-2. The experiment lasted 60 hours and it performed more than one trillion ligand-pocket evaluations, setting a new record on the virtual screening scale
    • …
    corecore