3,181 research outputs found

    Fast and Precise Symbolic Analysis of Concurrency Bugs in Device Drivers

    Get PDF
    © 2015 IEEE.Concurrency errors, such as data races, make device drivers notoriously hard to develop and debug without automated tool support. We present Whoop, a new automated approach that statically analyzes drivers for data races. Whoop is empowered by symbolic pairwise lockset analysis, a novel analysis that can soundly detect all potential races in a driver. Our analysis avoids reasoning about thread interleavings and thus scales well. Exploiting the race-freedom guarantees provided by Whoop, we achieve a sound partial-order reduction that significantly accelerates Corral, an industrial-strength bug-finder for concurrent programs. Using the combination of Whoop and Corral, we analyzed 16 drivers from the Linux 4.0 kernel, achieving 1.5 - 20× speedups over standalone Corral

    Real-time lattice boltzmann shallow waters method for breaking wave simulations

    Get PDF
    We present a new approach for the simulation of surfacebased fluids based in a hybrid formulation of Lattice Boltzmann Method for Shallow Waters and particle systems. The modified LBM can handle arbitrary underlying terrain conditions and arbitrary fluid depth. It also introduces a novel method for tracking dry-wet regions and moving boundaries. Dynamic rigid bodies are also included in our simulations using a two-way coupling. Certain features of the simulation that the LBM can not handle because of its heightfield nature, as breaking waves, are detected and automatically turned into splash particles. Here we use a ballistic particle system, but our hybrid method can handle more complex systems as SPH. Both the LBM and particle systems are implemented in CUDA, although dynamic rigid bodies are simulated in CPU. We show the effectiveness of our method with various examples which achieve real-time on consumer-level hardware.Peer ReviewedPostprint (author's final draft

    The International Linear Collider

    Full text link
    In this article, we describe the key features of the recently completed technical design for the International Linear Collider (ILC), a 200-500 GeV linear electron-positron collider (expandable to 1 TeV) that is based on 1.3 GHz superconducting radio-frequency (SCRF) technology. The machine parameters and detector characteristics have been chosen to complement the Large Hadron Collider physics, including the discovery of the Higgs boson, and to further exploit this new particle physics energy frontier with a precision instrument. The linear collider design is the result of nearly twenty years of R&D, resulting in a mature conceptual design for the ILC project that reflects an international consensus. We summarize the physics goals and capability of the ILC, the enabling R&D and resulting accelerator design, as well as the concepts for two complementary detectors. The ILC is technically ready to be proposed and built as a next generation lepton collider, perhaps to be built in stages beginning as a Higgs factory.Comment: 41 page
    • …
    corecore