8 research outputs found

    Partitioning sparse deep neural networks for scalable training and inference

    Get PDF
    The state-of-the-art deep neural networks (DNNs) have significant computational and data management requirements. The size of both training data and models continue to increase. Sparsification and pruning methods are shown to be effective in removing a large fraction of connections in DNNs. The resulting sparse networks present unique challenges to further improve the computational efficiency of training and inference in deep learning. Both the feedforward (inference) and backpropagation steps in stochastic gradient descent (SGD) algorithm for training sparse DNNs involve consecutive sparse matrix-vector multiplications (SpMVs). We first introduce a distributed-memory parallel SpMV-based solution for the SGD algorithm to improve its scalability. The parallelization approach is based on row-wise partitioning of weight matrices that represent neuron connections between consecutive layers. We then propose a novel hypergraph model for partitioning weight matrices to reduce the total communication volume and ensure computational load-balance among processors. Experiments performed on sparse DNNs demonstrate that the proposed solution is highly efficient and scalable. By utilizing the proposed matrix partitioning scheme, the performance of our solution is further improved significantly

    Distributed Sparse Computing and Communication for Big Graph Analytics and Deep Learning

    Get PDF
    Sparsity can be found in the underlying structure of many real-world computationally expensive problems including big graph analytics and large scale sparse deep neural networks. In addition, if gracefully investigated, many of these problems contain a broad substratum of parallelism suitable for parallel and distributed executions of sparse computation. However, usually, dense computation is preferred to its sparse alternative as sparse computation is not only hard to parallelize due to the irregular nature of the sparse data, but also complicated to implement in terms of rewriting a dense algorithm into a sparse one. Hence, foolproof sparse computation requires customized data structures to encode the sparsity of the sparse data and new algorithms to mask the complexity of the sparse computation. However, by carefully exploiting the sparse data structures and algorithms, sparse computation can reduce memory consumption, communication volume, and processing power and thus undoubtedly move the scalability boundaries compared to its dense equivalent. In this dissertation, I explain how to use parallel and distributed computing techniques in the presence of sparsity to solve large scientific problems including graph analytics and deep learning. To meet this end goal, I leverage the duality between graph theory and sparse linear algebra primitives, and thus solve graph analytics and deep learning problems with the sparse matrix operations. My contributions are fourfold: (1) design and implementation of a new distributed compressed sparse matrix data structure that reduces both computation and communication volumes and is suitable for sparse matrix-vector and sparse matrix-matrix operations, (2) introducing the new MPI*X parallelism model that deems threads as basic units of computing and communication, (3) optimizing sparse matrix-matrix multiplication by employing different hashing techniques, and (4) proposing the new data-then-model parallelism that mitigates the effect of stragglers in sparse deep learning by combining data and model parallelisms. Altogether, these contributions provide a set of data structures and algorithms to accelerate and scale the sparse computing and communication

    Tango: rethinking quantization for graph neural network training on GPUs

    Full text link
    Graph Neural Networks (GNNs) are becoming increasingly popular due to their superior performance in critical graph-related tasks. While quantization is widely used to accelerate GNN computation, quantized training faces unprecedented challenges. Current quantized GNN training systems often have longer training times than their full-precision counterparts for two reasons: (i) addressing the accuracy challenge leads to excessive overhead, and (ii) the optimization potential exposed by quantization is not adequately leveraged. This paper introduces Tango which re-thinks quantization challenges and opportunities for graph neural network training on GPUs with three contributions: Firstly, we introduce efficient rules to maintain accuracy during quantized GNN training. Secondly, we design and implement quantization-aware primitives and inter-primitive optimizations that can speed up GNN training. Finally, we integrate Tango with the popular Deep Graph Library (DGL) system and demonstrate its superior performance over state-of-the-art approaches on various GNN models and datasets

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    corecore