59 research outputs found

    A Deep Learning Method for Optimal Undersampling Patterns and Image Recovery for MRI Exploiting Losses and Projections

    Get PDF
    Compressed Sensing was recently proposed to reduce the long acquisition time of Magnetic Resonance Imaging by undersampling the signal frequency content and then algorithmically reconstructing the original image. We propose a way to significantly improve the above method by exploiting a deep neural network to tackle both problems of frequency sub-sampling and image reconstruction simultaneously, thanks to the introduction of a new loss function to drive the training and the addition of a post-processing non-neural stage. Furthermore, we highlight how some of the quantities along the processing chain can be used as a proxy of the quality of the recovered image, thus allowing a self-assessment of the whole technique. All improvements hinge on the possibility of identifying constraints to which the final image must obey and suitably enforce them. The effectiveness of our approach is tested on real-world MRI acquisitions from the fastMRI public database and achieves an appreciable improvement in Peak Signal-to-Noise Ratio with respect to the original CS-based proposal with speed-up factors 4 and 8

    Compressive MRI with deep convolutional and attentive models

    Get PDF
    Since its advent in the last century, Magnetic Resonance Imaging (MRI) has demonstrated a significant impact on modern medicine and spectroscopy and witnessed widespread use in medical imaging and clinical practice, owing to the flexibility and excellent ability in viewing anatomical structures. Although it provides a non-invasive and ionizing radiation-free tool to create images of the anatomy of the human body being inspected, the long data acquisition process hinders its growth and development in time-critical applications. To shorten the scanning time and reduce the discomfort of patients, the sampling process can be accelerated by leaving out an amount of sampling steps and performing image reconstruction from a subset of measurements. However, the images created with under-sampled signals can suffer from strong aliasing artifacts which unfavorably affect the quality of diagnosis and treatment. Compressed sensing (CS) methods were introduced to alleviate the aliasing artifacts by reconstructing an image from the observed measurements via model-based optimization algorithms. Despite achieved success, the sparsity prior assumed by CS methods can be difficult to hold in real-world practice and challenging to capture complex anatomical structures. The iterative optimization algorithms are often computationally expensive and time-consuming, against the speed demand of modern MRI. Those factors limit the quality of reconstructed images and put restrictions on the achievable acceleration rates. This thesis mainly focuses on developing deep learning-based methods, specifically using modern over-parametrized models, for MRI reconstruction, by leveraging the powerful learning ability and representation capacity of such models. Firstly, we introduce an attentive selection generative adversarial network to achieve fine-grained reconstruction by performing large-field contextual information integration and attention selection mechanism. To incorporate domain-specific knowledge into the reconstruction procedure, an optimization-inspired deep cascaded framework is proposed with a novel deep data consistency block to leverage domain-specific knowledge and an adaptive spatial attention selection module to capture the correlations among high-resolution features, aiming to enhance the quality of recovered images. To efficiently utilize the contextual information hidden in the spatial dimensions, a novel region-guided channel-wise attention network is introduced to incorporate the spatial semantics into a channel-based attention mechanism, demonstrating a light-weight and flexible design to attain improved reconstruction performance. Secondly, a coil-agnostic reconstruction framework is introduced to solve the unknown forward process problem in parallel MRI reconstruction. To avoid the estimation of sensitivity maps, a novel data aggregation consistency block is proposed to approximately perform the data consistency enforcement without resorting to coil sensitivity information. A locality-aware spatial attention module is devised and embedded into the reconstruction pipeline to enhance the model performance by capturing spatial contextual information via data-adaptive kernel prediction. It is demonstrated by experiments that the proposed coil-agnostic method is robust and resilient to different machine configurations and outperforms other sensitivity estimation-based methods. Finally, the research work focusing on dynamic MRI reconstruction is presented. We introduce an optimization-inspired deep cascaded framework to recover a sequence of MRI images, which utilizes a novel mask-guided motion feature incorporation method to explicitly extract and incorporate the motion information into the reconstruction iterations, showing to better preserve the dynamic content. A spatio-temporal Fourier neural block is proposed and embedded into the network to improve the model performance by efficiently retrieving useful information in both spatial and temporal domains. It is demonstrated that the devised framework surpasses other competing methods and can generalize well on other reconstruction models and unseen data, validating its transferability and generalization capacity

    Neural metamodelling of fields: Towards a new deal in computational electromagnetics

    Get PDF
    In computational electromagnetism there are manyfold advantages when using machine learning methods, because no mathematical formulation is required to solve the direct problem for given input geometry. Moreover, thanks to the inherent bidirectionality of a convolutional neural network, it can be trained to identify the geometry giving rise to the prescribed output field. All this puts the ground for the neural meta-modeling of fields, in spite of different levels of cost and accuracy. In the paper it is shown how CNNs can be trained to solve problems of optimal shape synthesis, with training data sets based on finite-element analyses of electric and magnetic fields. In particular, a concept of multi-fidelity model makes it possible to control both prediction accuracy and computational cost. The shape design of a MEMS design and the TEAM workshop problem 35 are considered as the case studies

    A Comprehensive Review of Deep Learning-based Single Image Super-resolution

    Get PDF
    Image super-resolution (SR) is one of the vital image processing methods that improve the resolution of an image in the field of computer vision. In the last two decades, significant progress has been made in the field of super-resolution, especially by utilizing deep learning methods. This survey is an effort to provide a detailed survey of recent progress in single-image super-resolution in the perspective of deep learning while also informing about the initial classical methods used for image super-resolution. The survey classifies the image SR methods into four categories, i.e., classical methods, supervised learning-based methods, unsupervised learning-based methods, and domain-specific SR methods. We also introduce the problem of SR to provide intuition about image quality metrics, available reference datasets, and SR challenges. Deep learning-based approaches of SR are evaluated using a reference dataset. Some of the reviewed state-of-the-art image SR methods include the enhanced deep SR network (EDSR), cycle-in-cycle GAN (CinCGAN), multiscale residual network (MSRN), meta residual dense network (Meta-RDN), recurrent back-projection network (RBPN), second-order attention network (SAN), SR feedback network (SRFBN) and the wavelet-based residual attention network (WRAN). Finally, this survey is concluded with future directions and trends in SR and open problems in SR to be addressed by the researchers.Comment: 56 Pages, 11 Figures, 5 Table

    Reconstruction of Cardiac Cine MRI under Free-breathing using Motion-guided Deformable Alignment and Multi-resolution Fusion

    Full text link
    Objective: Cardiac cine magnetic resonance imaging (MRI) is one of the important means to assess cardiac functions and vascular abnormalities. However, due to cardiac beat, blood flow, or the patient's involuntary movement during the long acquisition, the reconstructed images are prone to motion artifacts that affect the clinical diagnosis. Therefore, accelerated cardiac cine MRI acquisition to achieve high-quality images is necessary for clinical practice. Approach: A novel end-to-end deep learning network is developed to improve cardiac cine MRI reconstruction under free breathing conditions. First, a U-Net is adopted to obtain the initial reconstructed images in k-space. Further to remove the motion artifacts, the Motion-Guided Deformable Alignment (MGDA) method with second-order bidirectional propagation is introduced to align the adjacent cine MRI frames by maximizing spatial-temporal information to alleviate motion artifacts. Finally, the Multi-Resolution Fusion (MRF) module is designed to correct the blur and artifacts generated from alignment operation and obtain the last high-quality reconstructed cardiac images. Main results: At an 8×\times acceleration rate, the numerical measurements on the ACDC dataset are SSIM of 78.40%±\pm4.57%, PSNR of 30.46±\pm1.22 dB, and NMSE of 0.0468±\pm0.0075. On the ACMRI dataset, the results are SSIM of 87.65%±\pm4.20%, PSNR of 30.04±\pm1.18 dB, and NMSE of 0.0473±\pm0.0072. Significance: The proposed method exhibits high-quality results with richer details and fewer artifacts for cardiac cine MRI reconstruction on different accelerations under free breathing conditions.Comment: 28 pages, 5 tables, 11 figure

    Deep learning methods for solving linear inverse problems: Research directions and paradigms

    Get PDF
    The linear inverse problem is fundamental to the development of various scientific areas. Innumerable attempts have been carried out to solve different variants of the linear inverse problem in different applications. Nowadays, the rapid development of deep learning provides a fresh perspective for solving the linear inverse problem, which has various well-designed network architectures results in state-of-the-art performance in many applications. In this paper, we present a comprehensive survey of the recent progress in the development of deep learning for solving various linear inverse problems. We review how deep learning methods are used in solving different linear inverse problems, and explore the structured neural network architectures that incorporate knowledge used in traditional methods. Furthermore, we identify open challenges and potential future directions along this research line
    corecore