18 research outputs found

    Fast Acquisition and Reconstruction Techniques in MRI

    Get PDF
    The aim of this thesis was to develop fast reconstruction and acquisition techniques for MRI that can support clinical applications where time is a limiting factor. In general, fast acquisition techniques were realized by undersampling k-space, while fast reconstruction techniques were achieved by using efficient numerical algorithms. In particular, undersampled acquisitions were processed in a CS and MRF framework. Preconditioning techniques were used to accelerate CS reconstructions, and a number of challenges encountered in MRF were addressed using appropriate post-processing techniques. European Research Council (ERC) Advanced Grant (670629 NOMA MRI)LUMC / Geneeskund

    Structural Variability from Noisy Tomographic Projections

    Full text link
    In cryo-electron microscopy, the 3D electric potentials of an ensemble of molecules are projected along arbitrary viewing directions to yield noisy 2D images. The volume maps representing these potentials typically exhibit a great deal of structural variability, which is described by their 3D covariance matrix. Typically, this covariance matrix is approximately low-rank and can be used to cluster the volumes or estimate the intrinsic geometry of the conformation space. We formulate the estimation of this covariance matrix as a linear inverse problem, yielding a consistent least-squares estimator. For nn images of size NN-by-NN pixels, we propose an algorithm for calculating this covariance estimator with computational complexity O(nN4+ÎșN6log⁥N)\mathcal{O}(nN^4+\sqrt{\kappa}N^6 \log N), where the condition number Îș\kappa is empirically in the range 1010--200200. Its efficiency relies on the observation that the normal equations are equivalent to a deconvolution problem in 6D. This is then solved by the conjugate gradient method with an appropriate circulant preconditioner. The result is the first computationally efficient algorithm for consistent estimation of 3D covariance from noisy projections. It also compares favorably in runtime with respect to previously proposed non-consistent estimators. Motivated by the recent success of eigenvalue shrinkage procedures for high-dimensional covariance matrices, we introduce a shrinkage procedure that improves accuracy at lower signal-to-noise ratios. We evaluate our methods on simulated datasets and achieve classification results comparable to state-of-the-art methods in shorter running time. We also present results on clustering volumes in an experimental dataset, illustrating the power of the proposed algorithm for practical determination of structural variability.Comment: 52 pages, 11 figure

    Accelerated Computation of Regularized Estimates in Magnetic Resonance Imaging.

    Full text link
    Magnetic resonance imaging (MRI) is a non-invasive medical imaging modality that uses magnetic fields. Accurate estimates of these fields are often used to improve the quality of MR imaging techniques. Regularized estimators for such fields are robust and can provide high quality estimates but often at a significant computational cost. In this work, we investigate several of these estimators with a focus on developing novel minimization methods that reduce their computation times. First, we explore regularized receive coil sensitivity estimation by demonstrating the improved performance of regularized methods over existing, heuristic approaches and by presenting several algorithms, based on augmented Lagrangian methods, that minimize the quadratic cost function in half the time required by a preconditioned conjugate gradient (CG) method. Second, we present a general cost function that combines the regularized estimation of the main magnetic field inhomogeneity for both multiple echo time field map estimation and chemical shift based water-fat imaging. We present two methods, both based on optimization transfer principles, that reduce the computation time of this estimator by a factor of 30 compared to the existing separable quadratic surrogates method. We also evaluate the effectiveness of edge preserving regularization for field inhomogeneity estimation near tissue interfaces. Third, we present a novel alternating minimization method that uses augmented Lagrangian methods to accelerate the computation of the compressed sensing based water-fat image reconstruction problem by at least ten times compared to the existing nonlinear CG method. The algorithms presented in this thesis may also be applicable to other MRI topics including B1+ estimation, T1 estimation from variable flip angles, and R2* corrected or parallel imaging extensions of compressed sensing based water-fat imaging.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107096/1/mjalliso_1.pd

    Improving Statistical Image Reconstruction for Cardiac X-ray Computed Tomography.

    Full text link
    Technological advances in CT imaging pose new challenges such as increased X-ray radiation dose and complexity of image reconstruction. Statistical image reconstruction methods use realistic models that incorporate the physics of the measurements and the statistical properties of the measurement noise, and they have potential to provide better image quality and dose reduction compared to the conventional filtered back-projection (FBP) method. However, statistical methods face several challenges that should be addressed before they can replace the FBP method universally. In this thesis, we develop various methods to overcome these challenges of statistical image reconstruction methods. Rigorous regularization design methods in Fourier domain were proposed to achieve more isotropic and uniform spatial resolution or noise properties. The design framework is general so that users can control the spatial resolution and the noise characteristics of the estimator. In addition, a regularization design method based on the hypothetical geometry concept was introduced to improve resolution or noise uniformity. Proposed designs using the new concept effectively improved the spatial resolution or noise uniformity in the reconstructed image. The hypothetical geometry idea is general enough to be applied to other scan geometries. Statistical weighting modification, based on how much each detector element affects insufficiently sampled region, was proposed to reduce the artifacts without degrading the temporal resolution within the region-of-interest (ROI). Another approach using an additional regularization term, that exploits information from the prior image, was investigated. Both methods effectively removed short-scan artifacts in the reconstructed image. We accelerated the family of ordered-subsets algorithms by introducing a double surrogate so that faster convergence speed can be achieved. Furthermore, we present a variable splitting based algorithm for motion-compensated image reconstruction (MCIR) problem that provides faster convergence compared to the conjugate gradient (CG) method. A sinogram-based motion estimation method that does not require any additional measurements other than the short-scan amount of data was introduced to provide decent initial estimates for the joint estimation. Proposed methods were evaluated using simulation and real patient data, and showed promising results for solving each challenge. Some of these methods can be combined to generate more complete solutions for CT imaging.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110319/1/janghcho_1.pd

    Spectral features of matrix-sequences, GLT, symbol, and application in preconditioning Krylov methods, image deblurring, and multigrid algorithms.

    Get PDF
    The final purpose of any scientific discipline can be regarded as the solution of real-world problems. With this aim, a mathematical modeling of the considered phenomenon is often compulsory. Closed-form solutions of the arising functional equations are usually not available and numerical discretization techniques are required. In this setting, the discretization of an infinite-dimensional linear equation via some linear approximation method, leads to a sequence of linear systems of increasing dimension whose coefficient matrices could inherit a structure from the continuous problem. For instance, the numerical approximation by local methods of constant or nonconstant coefficients systems of Partial Differential Equations (PDEs) over multidimensional domains, gives rise to multilevel block Toeplitz or to Generalized Locally Toeplitz (GLT) sequences, respectively. In the context of structured matrices, the convergence properties of iterative methods, like multigrid or preconditioned Krylov techniques, are strictly related to the notion of symbol, a function whose role relies in describing the asymptotical distribution of the spectrum. This thesis can be seen as a byproduct of the combined use of powerful tools like symbol, spectral distribution, and GLT, when dealing with the numerical solution of structured linear systems. We approach such an issue both from a theoretical and practical viewpoint. On the one hand, we enlarge some known spectral distribution tools by proving the eigenvalue distribution of matrix-sequences obtained as combination of some algebraic operations on multilevel block Toeplitz matrices. On the other hand, we take advantage of the obtained results for designing efficient preconditioning techniques. Moreover, we focus on the numerical solution of structured linear systems coming from the following applications: image deblurring, fractional diffusion equations, and coupled PDEs. A spectral analysis of the arising structured sequences allows us either to study the convergence and predict the behavior of preconditioned Krylov and multigrid methods applied to the coefficient matrices, or to design effective preconditioners and multigrid solvers for the associated linear systems

    Spectral features of matrix-sequences, GLT, symbol, and application in preconditioning Krylov methods, image deblurring, and multigrid algorithms.

    Get PDF
    The final purpose of any scientific discipline can be regarded as the solution of real-world problems. With this aim, a mathematical modeling of the considered phenomenon is often compulsory. Closed-form solutions of the arising functional equations are usually not available and numerical discretization techniques are required. In this setting, the discretization of an infinite-dimensional linear equation via some linear approximation method, leads to a sequence of linear systems of increasing dimension whose coefficient matrices could inherit a structure from the continuous problem. For instance, the numerical approximation by local methods of constant or nonconstant coefficients systems of Partial Differential Equations (PDEs) over multidimensional domains, gives rise to multilevel block Toeplitz or to Generalized Locally Toeplitz (GLT) sequences, respectively. In the context of structured matrices, the convergence properties of iterative methods, like multigrid or preconditioned Krylov techniques, are strictly related to the notion of symbol, a function whose role relies in describing the asymptotical distribution of the spectrum. This thesis can be seen as a byproduct of the combined use of powerful tools like symbol, spectral distribution, and GLT, when dealing with the numerical solution of structured linear systems. We approach such an issue both from a theoretical and practical viewpoint. On the one hand, we enlarge some known spectral distribution tools by proving the eigenvalue distribution of matrix-sequences obtained as combination of some algebraic operations on multilevel block Toeplitz matrices. On the other hand, we take advantage of the obtained results for designing efficient preconditioning techniques. Moreover, we focus on the numerical solution of structured linear systems coming from the following applications: image deblurring, fractional diffusion equations, and coupled PDEs. A spectral analysis of the arising structured sequences allows us either to study the convergence and predict the behavior of preconditioned Krylov and multigrid methods applied to the coefficient matrices, or to design effective preconditioners and multigrid solvers for the associated linear systems

    Image distortion correction for MRI in low field permanent magnet systems with strong B-0 inhomogeneity and gradient field nonlinearities

    Get PDF
    Objective To correct for image distortions produced by standard Fourier reconstruction techniques on low field permanent magnet MRI systems with strong B-0 inhomogeneity and gradient field nonlinearities. Materials and methods Conventional image distortion correction algorithms require accurate Delta B-0 maps which are not possible to acquire directly when the B-0 inhomogeneities also produce significant image distortions. Here we use a readout gradient time-shift in a TSE sequence to encode the B-0 field inhomogeneities in the k-space signals. Using a non-shifted and a shifted acquisition as input, Delta B-0 maps and images were reconstructed in an iterative manner. In each iteration, Delta B-0 maps were reconstructed from the phase difference using Tikhonov regularization, while images were reconstructed using either conjugate phase reconstruction (CPR) or model-based (MB) image reconstruction, taking the reconstructed field map into account. MB reconstructions were, furthermore, combined with compressed sensing (CS) to show the flexibility of this approach towards undersampling. These methods were compared to the standard fast Fourier transform (FFT) image reconstruction approach in simulations and measurements. Distortions due to gradient nonlinearities were corrected in CPR and MB using simulated gradient maps. Results Simulation results show that for moderate field inhomogeneities and gradient nonlinearities, Delta B-0 maps and images reconstructed using iterative CPR result in comparable quality to that for iterative MB reconstructions. However, for stronger inhomogeneities, iterative MB reconstruction outperforms iterative CPR in terms of signal intensity correction. Combining MB with CS, similar image and Delta B-0 map quality can be obtained without a scan time penalty. These findings were confirmed by experimental results. Discussion In case of B-0 inhomogeneities in the order of kHz, iterative MB reconstructions can help to improve both image quality and Delta B-0 map estimation.Radiolog
    corecore