1,576 research outputs found

    Parameter Inference in Differential Equation Models of Biopathways using Time Warped Gradient Matching

    Get PDF
    Parameter inference in mechanistic models of biopathways based on systems of coupled differential equations is a topical yet computationally challenging problem, due to the fact that each parameter adaptation involves a numerical integration of the differential equations. Techniques based on gradient matching, which aim to minimize the discrepancy between the slope of a data interpolant and the derivatives predicted from the differential equations, offer a computationally appealing shortcut to the inference problem. However, gradient matching critically hinges on the smoothing scheme for function interpolation, with spurious wiggles in the interpolant having a dramatic effect on the subsequent inference. The present article demonstrates that a time warping approach aiming to homogenize intrinsic functional length scales can lead to a signifi- cant improvement in parameter estimation accuracy. We demonstrate the effectiveness of this scheme on noisy data from a dynamical system with periodic limit cycle and a biopathway

    On solving Ordinary Differential Equations using Gaussian Processes

    Full text link
    We describe a set of Gaussian Process based approaches that can be used to solve non-linear Ordinary Differential Equations. We suggest an explicit probabilistic solver and two implicit methods, one analogous to Picard iteration and the other to gradient matching. All methods have greater accuracy than previously suggested Gaussian Process approaches. We also suggest a general approach that can yield error estimates from any standard ODE solver
    • …
    corecore