156 research outputs found

    Impact of regulatory aspects on 5G mobile communication systems

    Get PDF
    The fifth generation of mobile communication networks generally known as 5G is a technology that, if we read anything about it we can arrive to the conclusion that it can be a revolution in many aspects. Starting with the great change that the telephone introduced, followed by the great improvements that the mobile phones carried along with them and finally internet and broadband access from any part of the world with a pocket device, we arrive to a time where 5G not only will it improve the existing technologies but it will allow the development of new inventions such as Internet of Things (IoT) that up to the date is reduced to various experiments and trials. The fifth generation of mobile communication systems will allow the development of applications, data models, data analysis at very high speeds, sensor measurements, and data transmissions instantly and a very long list of other things that will result in a revolution in one hand for the people’s lives and in the other to the markets and the way the companies carry out their business models and their internal and external general management. People’s quality of life will be affected substantially thanks to the establishment of 5G. This will be achieved thanks to the high speeds and the characteristics that 5G includes, and it will allow, for example, that a refrigerator can inform its owner about what products are needed or about what food is about to expire. This simple example is only one of many others that we can find when talking about 5G. Nonetheless, in order to be able to enjoy these advantages that 5G incorporates, it is necessary to conduct a development and deployment in an agreed upon way between all the different organisms and bearing in mind the regulatory aspects and the legislation valid and that needs to be developed in order to have a correct deployment. To do this, the regulatory organisms, and the commissions of the different countries have to agree between them and investigate what is the best way to provide the best standards, and to ease and speed up the deployments and start-ups of this new technology. After developing a detail study of the current requirements, objectives and the legislation and standardization, as well as the state of art of the technologies that provide us with the services that we enjoy nowadays, I have studied the barriers and drivers for the deployment of 5G. Finally, and after this previous study, I have analysed the possible deployments for this technology and how will it affect to the economic and social environment the use of these types of mobile communications. At the same time I have arrived to the final conclusions that 5G will be a complete revolution and anything that enables and eases the implementation has to be welcome.La quinta generación de redes de telecomunicaciones móviles comúnmente conocida como 5G es una tecnología de la que, si leemos cualquier información, llegaremos a la conclusión de que puede suponer una revolución en muchos aspectos. Comenzando por el gran cambio que supuso la invención del teléfono, seguida por la evidente y alta mejora que introdujo el teléfono móvil y finalmente la conexión a internet y el acceso de banda ancha desde cualquier parte del mundo con un dispositivo de bolsillo, llegamos a un momento en el que el 5G no solo mejorará las tecnologías ya existentes sino que permitirá desarrollar ideas tales como el internet de las cosas que, a día de hoy, se reducen a, varios experimentos y pruebas. El 5G permitirá el desarrollo de aplicaciones, modelos de datos, análisis de datos a altas velocidades, lecturas de sensores y transmisión de datos de forma instantánea y una larga lista de mejoras más que resultará en una revolución por una parte de la vida de las personas y por otra de los mercados y de la forma en la que las empresas llevarán a cabo sus modelos de negocio y en general su gestión externa e interna. La calidad de vida de las personas se verá afectada de forma sustancial gracias a la implantación del 5G. Esto se conseguirá debido a que las altas velocidades y las características que incorpora el 5G permitirán que, por ejemplo, una nevera avise a su dueño de aquello que falte en su interior, o que le informe de aquellos productos que están a punto de caducar. Este simple ejemplo solo es uno de todos los posibles que se pueden encontrar a la hora de hablar del 5G. Sin embargo, para poder llegar a disfrutar de todas las ventajas que el 5G aporta, es necesario llevar a cabo un desarrollo y un despliegue de forma conjunta entre los diferentes organismos, y teniendo en cuenta la normativa y legislación vigente y que se necesita desarrollar, para que este despliegue sea correcto. Para ello, los organismos regulatorios y las comisiones de diferentes países, deben ponerse de acuerdo e investigar cuál será la mejor forma de proporcionar los mejores estándares y facilitar y acelerar los despliegues y puestas en marcha de esta nueva tecnología. Después de llevar a cabo un estudio detallado sobre los requisitos, objetivos y la normativa y estandarización actual, así como el estado del arte de las tecnologías que hoy nos proporcionan los servicios de los que disfrutamos, se han estudiado las barreras y los aspectos favorecedores para la implantación del 5G. Finalmente, y tras este previo estudio, se han detallado los posibles despliegues para esta tecnología y se ha estudiado como afectará al entorno económico y social la utilización de este tipo de redes de comunicaciones móviles. A su vez, se han llegado a las conclusiones finales de que el 5G supondrá toda una revolución, y que todo aquello que favorezca su despliegue e implantación, debe ser bienvenido.Ingeniería Telemátic

    5G Network Slicing using SDN and NFV: A Survey of Taxonomy, Architectures and Future Challenges

    Get PDF
    In this paper, we provide a comprehensive review and updated solutions related to 5G network slicing using SDN and NFV. Firstly, we present 5G service quality and business requirements followed by a description of 5G network softwarization and slicing paradigms including essential concepts, history and different use cases. Secondly, we provide a tutorial of 5G network slicing technology enablers including SDN, NFV, MEC, cloud/Fog computing, network hypervisors, virtual machines & containers. Thidly, we comprehensively survey different industrial initiatives and projects that are pushing forward the adoption of SDN and NFV in accelerating 5G network slicing. A comparison of various 5G architectural approaches in terms of practical implementations, technology adoptions and deployment strategies is presented. Moreover, we provide a discussion on various open source orchestrators and proof of concepts representing industrial contribution. The work also investigates the standardization efforts in 5G networks regarding network slicing and softwarization. Additionally, the article presents the management and orchestration of network slices in a single domain followed by a comprehensive survey of management and orchestration approaches in 5G network slicing across multiple domains while supporting multiple tenants. Furthermore, we highlight the future challenges and research directions regarding network softwarization and slicing using SDN and NFV in 5G networks.Comment: 40 Pages, 22 figures, published in computer networks (Open Access

    UWB channel characterization in 28 ghz millimeter waveband for 5G cellular networks

    Get PDF
    The demands of high data rate transmission for future wireless communication technologies are increasing rapidly. The current bands for cellular network will not be able to satisfy these requirements. The millimeter wave (mm-wave) bands are the candidate bands for the future cellular networks. The 28 GHz band is the strongest candidate for 5G cellular networks. The large bandwidth at this band is one of the main parameters that make the mm-wave bands promising candidate for the future cellular networks. To know the wideband channel behavior in mm-wave bands, the wideband channel characterizations are required. In this paper, the 3D WINNER model is used to model the wideband channel at 28 GHz band. Based on this model, the time dispersion parameters at 28 GHz mm-wave band are investigated. The root mean square delay spread and the mean excess delay are the main parameters that can be used to characterize the wideband channel. Morever, the cumulative distribution function (CDF) is used to model the RMS delay spreads. The results show that the RMS delay spread varies between 4.1 ns and 443.7 ns

    Blockchain-based roaming and offload service platform for local 5G operators

    Get PDF
    Abstract. 5G is the latest generation of mobile networks which will be deployed based on network softwarization concept. It will enable Local 5G Operator (L5GO) concept which is one of the most prominent versatile applications of the 5G in the near future. The unique locality features of L5GOs will be useful in many use cases such as smart cities, industrial internet and healthcare. The popularity of L5GOs will trigger more and more number of roaming and offloading opportunities between mobile users. However, existing static and the operator-assisted roaming and offloading procedures are inefficient for L5GO ecosystem. To address these challenges, we propose a blockchain / Distributed Ledger Technology (DLT) based service platform for the L5GOs to facilitate efficient roaming and offload services. We introduce several novel features, namely, universal wallet for subscribers, service quality based L5GO rating system, user-initiated roaming process and the roaming fraud prevention system. Blockchain-based smart contract scheme is proposed to establish dynamic and automated agreements between operators. A prototype of the proposed platform is emulated with the Ethereum blockchain platform and Rinkeby Testnet to evaluate the performance and justify the feasibility of the proposal

    Understanding O-RAN: Architecture, Interfaces, Algorithms, Security, and Research Challenges

    Full text link
    The Open Radio Access Network (RAN) and its embodiment through the O-RAN Alliance specifications are poised to revolutionize the telecom ecosystem. O-RAN promotes virtualized RANs where disaggregated components are connected via open interfaces and optimized by intelligent controllers. The result is a new paradigm for the RAN design, deployment, and operations: O-RAN networks can be built with multi-vendor, interoperable components, and can be programmatically optimized through a centralized abstraction layer and data-driven closed-loop control. Therefore, understanding O-RAN, its architecture, its interfaces, and workflows is key for researchers and practitioners in the wireless community. In this article, we present the first detailed tutorial on O-RAN. We also discuss the main research challenges and review early research results. We provide a deep dive of the O-RAN specifications, describing its architecture, design principles, and the O-RAN interfaces. We then describe how the O-RAN RAN Intelligent Controllers (RICs) can be used to effectively control and manage 3GPP-defined RANs. Based on this, we discuss innovations and challenges of O-RAN networks, including the Artificial Intelligence (AI) and Machine Learning (ML) workflows that the architecture and interfaces enable, security and standardization issues. Finally, we review experimental research platforms that can be used to design and test O-RAN networks, along with recent research results, and we outline future directions for O-RAN development.Comment: 33 pages, 16 figures, 3 tables. Submitted for publication to the IEE
    corecore