63,537 research outputs found

    The spectral difference between solar flare HXR coronal and footpoint sources due to wave-particle interactions

    Full text link
    Investigate the spatial and spectral evolution of hard X-ray (HXR) emission from flare accelerated electron beams subject to collisional transport and wave-particle interactions in the solar atmosphere. We numerically follow the propagation of a power-law of accelerated electrons in 1D space and time with the response of the background plasma in the form of Langmuir waves using the quasilinear approximation.}{We find that the addition of wave-particle interactions to collisional transport for a transient initially injected electron beam flattens the spectrum of the footpoint source. The coronal source is unchanged and so the difference in the spectral indices between the coronal and footpoint sources is \Delta \gamma > 2, which is larger than expected from purely collisional transport. A steady-state beam shows little difference between the two cases, as has been previously found, as a transiently injected electron beam is required to produce significant wave growth, especially at higher velocities. With this transiently injected beam the wave-particle interactions dominate in the corona whereas the collisional losses dominate in the chromosphere. The shape of the spectrum is different with increasing electron beam density in the wave-particle interaction case whereas with purely collisional transport only the normalisation is changed. We also find that the starting height of the source electron beam above the photosphere affects the spectral index of the footpoint when Langmuir wave growth is included. This may account for the differing spectral indices found between double footpoints if asymmetrical injection has occurred in the flaring loop.Comment: 10 pages, 10 FIgures, accepted for publication in A&

    Broken phase effective potential in the two-loop Phi-derivable approximation and nature of the phase transition in a scalar theory

    Get PDF
    We study the phase transition of a real scalar phi^4 theory in the two-loop Phi-derivable approximation using the imaginary time formalism, extending our previous (analytical) discussion of the Hartree approximation. We combine Fast Fourier Transform algorithms and accelerated Matsubara sums in order to achieve a high accuracy. Our results confirm and complete earlier ones obtained in the real time formalism [1] but which were less accurate due to the integration in Minkowski space and the discretization of the spectral density function. We also provide a complete and explicit discussion of the renormalization of the two-loop Phi-derivable approximation at finite temperature, both in the symmetric and in the broken phase, which was already used in the real-time approach, but never published. Our main result is that the two-loop Phi-derivable approximation suffices to cure the problem of the Hartree approximation regarding the order of the transition: the transition is of the second order type, as expected on general grounds. The corresponding critical exponents are, however, of the mean-field type. Using a "RG-improved" version of the approximation, motivated by our renormalization procedure, we find that the exponents are modified. In particular, the exponent delta, which relates the field expectation value phi to an external field h, changes from 3 to 5, getting then closer to its expected value 4.789, obtained from accurate numerical estimates [2].Comment: 54 pages, 16 figure

    Accelerated Inexact Composite Gradient Methods for Nonconvex Spectral Optimization Problems

    Full text link
    This paper presents two inexact composite gradient methods, one inner accelerated and another doubly accelerated, for solving a class of nonconvex spectral composite optimization problems. More specifically, the objective function for these problems is of the form f1+f2+hf_1 + f_2 + h where f1f_1 and f2f_2 are differentiable nonconvex matrix functions with Lipschitz continuous gradients, hh is a proper closed convex matrix function, and both f2f_2 and hh can be expressed as functions that operate on the singular values of their inputs. The methods essentially use an accelerated composite gradient method to solve a sequence of proximal subproblems involving the linear approximation of f1f_1 and the singular value functions underlying f2f_2 and hh. Unlike other composite gradient-based methods, the proposed methods take advantage of both the composite and spectral structure underlying the objective function in order to efficiently generate their solutions. Numerical experiments are presented to demonstrate the practicality of these methods on a set of real-world and randomly generated spectral optimization problems

    Reconstruction of Inflation Models

    Full text link
    In this paper, we reconstruct viable inflationary models by starting from spectral index and tensor-to-scalar ratio from Planck observations. We analyze three different kinds of models: scalar field theories, fluid cosmology and f(R)-modified gravity. We recover the well known R^2-inflation in Jodan frame and Einstein frame representation, the massive scalar inflaton models and two models of inhomogeneous fluid. A model of R^2-correction to Einstein's gravity plus a "cosmological constant" with an exact solution for early time acceleration is reconstructed.Comment: 14 page
    • …
    corecore