1,617 research outputs found

    Off-the-grid model based deep learning (O-MODL)

    Full text link
    We introduce a model based off-the-grid image reconstruction algorithm using deep learned priors. The main difference of the proposed scheme with current deep learning strategies is the learning of non-linear annihilation relations in Fourier space. We rely on a model based framework, which allows us to use a significantly smaller deep network, compared to direct approaches that also learn how to invert the forward model. Preliminary comparisons against image domain MoDL approach demonstrates the potential of the off-the-grid formulation. The main benefit of the proposed scheme compared to structured low-rank methods is the quite significant reduction in computational complexity.Comment: ISBI 201

    Convolutional Dictionary Learning: Acceleration and Convergence

    Full text link
    Convolutional dictionary learning (CDL or sparsifying CDL) has many applications in image processing and computer vision. There has been growing interest in developing efficient algorithms for CDL, mostly relying on the augmented Lagrangian (AL) method or the variant alternating direction method of multipliers (ADMM). When their parameters are properly tuned, AL methods have shown fast convergence in CDL. However, the parameter tuning process is not trivial due to its data dependence and, in practice, the convergence of AL methods depends on the AL parameters for nonconvex CDL problems. To moderate these problems, this paper proposes a new practically feasible and convergent Block Proximal Gradient method using a Majorizer (BPG-M) for CDL. The BPG-M-based CDL is investigated with different block updating schemes and majorization matrix designs, and further accelerated by incorporating some momentum coefficient formulas and restarting techniques. All of the methods investigated incorporate a boundary artifacts removal (or, more generally, sampling) operator in the learning model. Numerical experiments show that, without needing any parameter tuning process, the proposed BPG-M approach converges more stably to desirable solutions of lower objective values than the existing state-of-the-art ADMM algorithm and its memory-efficient variant do. Compared to the ADMM approaches, the BPG-M method using a multi-block updating scheme is particularly useful in single-threaded CDL algorithm handling large datasets, due to its lower memory requirement and no polynomial computational complexity. Image denoising experiments show that, for relatively strong additive white Gaussian noise, the filters learned by BPG-M-based CDL outperform those trained by the ADMM approach.Comment: 21 pages, 7 figures, submitted to IEEE Transactions on Image Processin

    Conjugate Gradient Acceleration of Non-Linear Smoothing Filters

    Full text link
    The most efficient signal edge-preserving smoothing filters, e.g., for denoising, are non-linear. Thus, their acceleration is challenging and is often performed in practice by tuning filter parameters, such as by increasing the width of the local smoothing neighborhood, resulting in more aggressive smoothing of a single sweep at the cost of increased edge blurring. We propose an alternative technology, accelerating the original filters without tuning, by running them through a special conjugate gradient method, not affecting their quality. The filter non-linearity is dealt with by careful freezing and restarting. Our initial numerical experiments on toy one-dimensional signals demonstrate 20x acceleration of the classical bilateral filter and 3-5x acceleration of the recently developed guided filter.Comment: 5 pages, 5 figures, IEEE Conference GlobalSIP 201

    Edge-enhancing Filters with Negative Weights

    Full text link
    In [DOI:10.1109/ICMEW.2014.6890711], a graph-based denoising is performed by projecting the noisy image to a lower dimensional Krylov subspace of the graph Laplacian, constructed using nonnegative weights determined by distances between image data corresponding to image pixels. We~extend the construction of the graph Laplacian to the case, where some graph weights can be negative. Removing the positivity constraint provides a more accurate inference of a graph model behind the data, and thus can improve quality of filters for graph-based signal processing, e.g., denoising, compared to the standard construction, without affecting the costs.Comment: 5 pages; 6 figures. Accepted to IEEE GlobalSIP 2015 conferenc

    Burst Denoising with Kernel Prediction Networks

    Full text link
    We present a technique for jointly denoising bursts of images taken from a handheld camera. In particular, we propose a convolutional neural network architecture for predicting spatially varying kernels that can both align and denoise frames, a synthetic data generation approach based on a realistic noise formation model, and an optimization guided by an annealed loss function to avoid undesirable local minima. Our model matches or outperforms the state-of-the-art across a wide range of noise levels on both real and synthetic data.Comment: To appear in CVPR 2018 (spotlight). Project page: http://people.eecs.berkeley.edu/~bmild/kpn

    Signal reconstruction via operator guiding

    Full text link
    Signal reconstruction from a sample using an orthogonal projector onto a guiding subspace is theoretically well justified, but may be difficult to practically implement. We propose more general guiding operators, which increase signal components in the guiding subspace relative to those in a complementary subspace, e.g., iterative low-pass edge-preserving filters for super-resolution of images. Two examples of super-resolution illustrate our technology: a no-flash RGB photo guided using a high resolution flash RGB photo, and a depth image guided using a high resolution RGB photo.Comment: 5 pages, 8 figures. To appear in Proceedings of SampTA 2017: Sampling Theory and Applications, 12th International Conference, July 3-7, 2017, Tallinn, Estoni

    Convolutional Sparse Coding with Overlapping Group Norms

    Full text link
    The most widely used form of convolutional sparse coding uses an β„“1\ell_1 regularization term. While this approach has been successful in a variety of applications, a limitation of the β„“1\ell_1 penalty is that it is homogeneous across the spatial and filter index dimensions of the sparse representation array, so that sparsity cannot be separately controlled across these dimensions. The present paper considers the consequences of replacing the β„“1\ell_1 penalty with a mixed group norm, motivated by recent theoretical results for convolutional sparse representations. Algorithms are developed for solving the resulting problems, which are quite challenging, and the impact on the performance of the denoising problem is evaluated. The mixed group norms are found to perform very poorly in this application. While their performance is greatly improved by introducing a weighting strategy, such a strategy also improves the performance obtained from the much simpler and computationally cheaper β„“1\ell_1 norm

    A Brief Survey of Recent Edge-Preserving Smoothing Algorithms on Digital Images

    Full text link
    Edge preserving filters preserve the edges and its information while blurring an image. In other words they are used to smooth an image, while reducing the edge blurring effects across the edge like halos, phantom etc. They are nonlinear in nature. Examples are bilateral filter, anisotropic diffusion filter, guided filter, trilateral filter etc. Hence these family of filters are very useful in reducing the noise in an image making it very demanding in computer vision and computational photography applications like denoising, video abstraction, demosaicing, optical-flow estimation, stereo matching, tone mapping, style transfer, relighting etc. This paper provides a concrete introduction to edge preserving filters starting from the heat diffusion equation in olden to recent eras, an overview of its numerous applications, as well as mathematical analysis, various efficient and optimized ways of implementation and their interrelationships, keeping focus on preserving the boundaries, spikes and canyons in presence of noise. Furthermore it provides a realistic notion for efficient implementation with a research scope for hardware realization for further acceleration.Comment: Manuscrip

    Convolutional Sparse Representations with Gradient Penalties

    Full text link
    While convolutional sparse representations enjoy a number of useful properties, they have received limited attention for image reconstruction problems. The present paper compares the performance of block-based and convolutional sparse representations in the removal of Gaussian white noise. While the usual formulation of the convolutional sparse coding problem is slightly inferior to the block-based representations in this problem, the performance of the convolutional form can be boosted beyond that of the block-based form by the inclusion of suitable penalties on the gradients of the coefficient maps

    Data-Driven Tight Frame for Cryo-EM Image Denoising and Conformational Classification

    Full text link
    The cryo-electron microscope (cryo-EM) is increasingly popular these years. It helps to uncover the biological structures and functions of macromolecules. In this paper, we address image denoising problem in cryo-EM. Denoising the cryo-EM images can help to distinguish different molecular conformations and improve three dimensional reconstruction resolution. We introduce the use of data-driven tight frame (DDTF) algorithm for cryo-EM image denoising. The DDTF algorithm is closely related to the dictionary learning. The advantage of DDTF algorithm is that it is computationally efficient, and can well identify the texture and shape of images without using large data samples. Experimental results on cryo-EM image denoising and conformational classification demonstrate the power of DDTF algorithm for cryo-EM image denoising and classification.Comment: 2018 IEEE Global Signal and Information Processin
    • …
    corecore