17,811 research outputs found

    Accelerated gradient methods for total-variation-based CT image reconstruction

    Get PDF
    Total-variation (TV)-based Computed Tomography (CT) image reconstruction has shown experimentally to be capable of producing accurate reconstructions from sparse-view data. In particular TV-based reconstruction is very well suited for images with piecewise nearly constant regions. Computationally, however, TV-based reconstruction is much more demanding, especially for 3D imaging, and the reconstruction from clinical data sets is far from being close to real-time. This is undesirable from a clinical perspective, and thus there is an incentive to accelerate the solution of the underlying optimization problem. The TV reconstruction can in principle be found by any optimization method, but in practice the large-scale systems arising in CT image reconstruction preclude the use of memory-demanding methods such as Newton's method. The simple gradient method has much lower memory requirements, but exhibits slow convergence. In the present work we consider the use of two accelerated gradient-based methods, GPBB and UPN, for reducing the number of gradient method iterations needed to achieve a high-accuracy TV solution in CT image reconstruction. The former incorporates several heuristics from the optimization literature such as Barzilai-Borwein (BB) step size selection and nonmonotone line search. The latter uses a cleverly chosen sequence of auxiliary points to achieve a better convergence rate. The methods are memory efficient and equipped with a stopping criterion to ensure that the TV reconstruction has indeed been found. An implementation of the methods (in C with interface to Matlab) is available for download from http://www2.imm.dtu.dk/~pch/TVReg/. We compare the proposed methods with the standard gradient method, applied to a 3D test problem with synthetic few-view data. We find experimentally that for realistic parameters the proposed methods significantly outperform the gradient method.Comment: 4 pages, 2 figure

    Graphics processing unit accelerating compressed sensing photoacoustic computed tomography with total variation

    Get PDF
    Photoacoustic computed tomography with compressed sensing (CS-PACT) is a commonly used imaging strategy for sparse-sampling PACT. However, it is very time-consuming because of the iterative process involved in the image reconstruction. In this paper, we present a graphics processing unit (GPU)-based parallel computation framework for total-variation-based CS-PACT and adapted into a custom-made PACT system. Specifically, five compute-intensive operators are extracted from the iteration algorithm and are redesigned for parallel performance on a GPU. We achieved an image reconstruction speed 24–31 times faster than the CPU performance. We performed in vivo experiments on human hands to verify the feasibility of our developed method

    Accelerated High-Resolution Photoacoustic Tomography via Compressed Sensing

    Get PDF
    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue. A particular example is the planar Fabry-Perot (FP) scanner, which yields high-resolution images but takes several minutes to sequentially map the photoacoustic field on the sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: First, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP scanner and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in-vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction methods that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of PAT scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.Comment: submitted to "Physics in Medicine and Biology

    First order algorithms in variational image processing

    Get PDF
    Variational methods in imaging are nowadays developing towards a quite universal and flexible tool, allowing for highly successful approaches on tasks like denoising, deblurring, inpainting, segmentation, super-resolution, disparity, and optical flow estimation. The overall structure of such approaches is of the form D(Ku)+αR(u)minu{\cal D}(Ku) + \alpha {\cal R} (u) \rightarrow \min_u ; where the functional D{\cal D} is a data fidelity term also depending on some input data ff and measuring the deviation of KuKu from such and R{\cal R} is a regularization functional. Moreover KK is a (often linear) forward operator modeling the dependence of data on an underlying image, and α\alpha is a positive regularization parameter. While D{\cal D} is often smooth and (strictly) convex, the current practice almost exclusively uses nonsmooth regularization functionals. The majority of successful techniques is using nonsmooth and convex functionals like the total variation and generalizations thereof or 1\ell_1-norms of coefficients arising from scalar products with some frame system. The efficient solution of such variational problems in imaging demands for appropriate algorithms. Taking into account the specific structure as a sum of two very different terms to be minimized, splitting algorithms are a quite canonical choice. Consequently this field has revived the interest in techniques like operator splittings or augmented Lagrangians. Here we shall provide an overview of methods currently developed and recent results as well as some computational studies providing a comparison of different methods and also illustrating their success in applications.Comment: 60 pages, 33 figure

    Toward optimal X-ray flux utilization in breast CT

    Full text link
    A realistic computer-simulation of a breast computed tomography (CT) system and subject is constructed. The model is used to investigate the optimal number of views for the scan given a fixed total X-ray fluence. The reconstruction algorithm is based on accurate solution to a constrained, TV-minimization problem, which has received much interest recently for sparse-view CT data.Comment: accepted to the 11th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine 201

    Enhancing Compressed Sensing 4D Photoacoustic Tomography by Simultaneous Motion Estimation

    Get PDF
    A crucial limitation of current high-resolution 3D photoacoustic tomography (PAT) devices that employ sequential scanning is their long acquisition time. In previous work, we demonstrated how to use compressed sensing techniques to improve upon this: images with good spatial resolution and contrast can be obtained from suitably sub-sampled PAT data acquired by novel acoustic scanning systems if sparsity-constrained image reconstruction techniques such as total variation regularization are used. Now, we show how a further increase of image quality can be achieved for imaging dynamic processes in living tissue (4D PAT). The key idea is to exploit the additional temporal redundancy of the data by coupling the previously used spatial image reconstruction models with sparsity-constrained motion estimation models. While simulated data from a two-dimensional numerical phantom will be used to illustrate the main properties of this recently developed joint-image-reconstruction-and-motion-estimation framework, measured data from a dynamic experimental phantom will also be used to demonstrate their potential for challenging, large-scale, real-world, three-dimensional scenarios. The latter only becomes feasible if a carefully designed combination of tailored optimization schemes is employed, which we describe and examine in more detail
    corecore