408 research outputs found

    Disambiguoiva morfologinen jäsennys probabilistisilla sekvenssimalleilla

    Get PDF
    A morphological tagger is a computer program that provides complete morphological descriptions of sentences. Morphological taggers find applications in many NLP fields. For example, they can be used as a pre-processing step for syntactic parsers, in information retrieval and machine translation. The task of morphological tagging is closely related to POS tagging but morphological taggers provide more fine-grained morphological information than POS taggers. Therefore, they are often applied to morphologically complex languages, which extensively utilize inflection, derivation and compounding for encoding structural and semantic information. This thesis presents work on data-driven morphological tagging for Finnish and other morphologically complex languages. There exists a very limited amount of previous work on data-driven morphological tagging for Finnish because of the lack of freely available manually prepared morphologically tagged corpora. The work presented in this thesis is made possible by the recently published Finnish dependency treebanks FinnTreeBank and Turku Dependency Treebank. Additionally, the Finnish open-source morphological analyzer OMorFi is extensively utilized in the experiments presented in the thesis. The thesis presents methods for improving tagging accuracy, estimation speed and tagging speed in presence of large structured morphological label sets that are typical for morphologically complex languages. More specifically, it presents a novel formulation of generative morphological taggers using weighted finite-state machines and applies finite-state taggers to context sensitive spelling correction of Finnish. The thesis also explores discriminative morphological tagging. It presents structured sub-label dependencies that can be used for improving tagging accuracy. Additionally, the thesis presents a cascaded variant of the averaged perceptron tagger. In presence of large label sets, a cascaded design results in substantial reduction of estimation speed compared to a standard perceptron tagger. Moreover, the thesis explores pruning strategies for perceptron taggers. Finally, the thesis presents the FinnPos toolkit for morphological tagging. FinnPos is an open-source state-of-the-art averaged perceptron tagger implemented by the author.Disambiguoiva morfologinen jäsennin on ohjelma, joka tuottaa yksikäsitteisiä morfologisia kuvauksia virkkeen sanoille. Tällaisia jäsentimiä voidaan hyödyntää monilla kielenkäsittelyn osa-alueilla, esimerkiksi syntaktisen jäsentimen tai konekäännösjärjestelmän esikäsittelyvaiheena. Kieliteknologisena tehtävänä disambiguoiva morfologinen jäsennys muistuttaa perinteistä sanaluokkajäsennystä, mutta se tuottaa hienojakoisempaa morfologista informaatiota kuin perinteinen sanaluokkajäsennin. Tämän takia disambiguoivia morfologisia jäsentimiä hyödynnetäänkin pääsääntöisesti morfologisesti monimutkaisten kielten, kuten suomen kielen, kieliteknologiassa. Tällaisissa kielissä käytetään paljon sananmuodostuskeinoja kuten taivutusta, johtamista ja yhdyssananmuodostusta. Väitöskirjan esittelemä tutkimus liittyy morfologisesti rikkaiden kielten disambiguoivaan morfologiseen jäsentämiseen koneoppimismenetelmin. Vaikka suomen disambiguoivaa morfologista jäsentämistä on tutkittu aiemmin (esim. Constraint Grammar -formalismin avulla), koneoppimismenetelmiä ei ole aiemmin juurikaan sovellettu. Tämä johtuu siitä että jäsentimen oppimiseen tarvittavia korkealuokkaisia morfologisesti annotoituja korpuksia ei ole ollut avoimesti saatavilla. Tässä väitöskirjassa esitelty tutkimus hyödyntää vastikään julkaistuja suomen kielen dependenssijäsennettyjä FinnTreeBank ja Turku Dependency Treebank korpuksia. Lisäksi tutkimus hyödyntää suomen kielen avointa morfologista OMorFi-jäsennintä. Väitöskirja esittelee menetelmiä jäsennystarkkuuden parantamiseen ja jäsentimen opetusnopeuden sekä jäsennysnopeuden kasvattamiseen. Väitöskirja esittää uuden tavan rakentaa generatiivisia jäsentimiä hyödyntäen painollisia äärellistilaisia koneita ja soveltaa tällaisia jäsentimiä suomen kielen kontekstisensitiiviseen oikeinkirjoituksentarkistukseen. Lisäksi väitöskirja käsittelee diskriminatiivisia jäsennysmalleja. Se esittelee tapoja hyödyntää morfologisten analyysien osia jäsennystarkkuuden parantamiseen. Lisäksi se esittää kaskadimallin, jonka avulla jäsentimen opetusaika lyhenee huomattavasi. Väitöskirja esittää myös tapoja jäsenninmallien pienentämiseen. Lopuksi esitellään FinnPos, joka on kirjoittaman toteuttama avoimen lähdekoodin työkalu disambiguoivien morfologisten jäsentimien opettamiseen

    Apprentissage discriminant des modèles continus en traduction automatique

    Get PDF
    Over the past few years, neural network (NN) architectures have been successfully applied to many Natural Language Processing (NLP) applications, such as Automatic Speech Recognition (ASR) and Statistical Machine Translation (SMT).For the language modeling task, these models consider linguistic units (i.e words and phrases) through their projections into a continuous (multi-dimensional) space, and the estimated distribution is a function of these projections. Also qualified continuous-space models (CSMs), their peculiarity hence lies in this exploitation of a continuous representation that can be seen as an attempt to address the sparsity issue of the conventional discrete models. In the context of SMT, these echniques have been applied on neural network-based language models (NNLMs) included in SMT systems, and oncontinuous-space translation models (CSTMs). These models have led to significant and consistent gains in the SMT performance, but are also considered as very expensive in training and inference, especially for systems involving large vocabularies. To overcome this issue, Structured Output Layer (SOUL) and Noise Contrastive Estimation (NCE) have been proposed; the former modifies the standard structure on vocabulary words, while the latter approximates the maximum-likelihood estimation (MLE) by a sampling method. All these approaches share the same estimation criterion which is the MLE ; however using this procedure results in an inconsistency between theobjective function defined for parameter stimation and the way models are used in the SMT application. The work presented in this dissertation aims to design new performance-oriented and global training procedures for CSMs to overcome these issues. The main contributions lie in the investigation and evaluation of efficient training methods for (large-vocabulary) CSMs which aim~:(a) to reduce the total training cost, and (b) to improve the efficiency of these models when used within the SMT application. On the one hand, the training and inference cost can be reduced (using the SOUL structure or the NCE algorithm), or by reducing the number of iterations via a faster convergence. This thesis provides an empirical analysis of these solutions on different large-scale SMT tasks. On the other hand, we propose a discriminative training framework which optimizes the performance of the whole system containing the CSM as a component model. The experimental results show that this framework is efficient to both train and adapt CSM within SMT systems, opening promising research perspectives.Durant ces dernières années, les architectures de réseaux de neurones (RN) ont été appliquées avec succès à de nombreuses applications en Traitement Automatique de Langues (TAL), comme par exemple en Reconnaissance Automatique de la Parole (RAP) ainsi qu'en Traduction Automatique (TA).Pour la tâche de modélisation statique de la langue, ces modèles considèrent les unités linguistiques (c'est-à-dire des mots et des segments) à travers leurs projections dans un espace continu (multi-dimensionnel), et la distribution de probabilité à estimer est une fonction de ces projections.Ainsi connus sous le nom de "modèles continus" (MC), la particularité de ces derniers se trouve dans l'exploitation de la représentation continue qui peut être considérée comme une solution au problème de données creuses rencontré lors de l'utilisation des modèles discrets conventionnels.Dans le cadre de la TA, ces techniques ont été appliquées dans les modèles de langue neuronaux (MLN) utilisés dans les systèmes de TA, et dans les modèles continus de traduction (MCT).L'utilisation de ces modèles se sont traduit par d'importantes et significatives améliorations des performances des systèmes de TA. Ils sont néanmoins très coûteux lors des phrases d'apprentissage et d'inférence, notamment pour les systèmes ayant un grand vocabulaire.Afin de surmonter ce problème, l'architecture SOUL (pour "Structured Output Layer" en anglais) et l'algorithme NCE (pour "Noise Contrastive Estimation", ou l'estimation contrastive bruitée) ont été proposés: le premier modifie la structure standard de la couche de sortie, alors que le second cherche à approximer l'estimation du maximum de vraisemblance (MV) par une méthode d’échantillonnage.Toutes ces approches partagent le même critère d'estimation qui est la log-vraisemblance; pourtant son utilisation mène à une incohérence entre la fonction objectif définie pour l'estimation des modèles, et la manière dont ces modèles seront utilisés dans les systèmes de TA.Cette dissertation vise à concevoir de nouvelles procédures d'entraînement des MC, afin de surmonter ces problèmes.Les contributions principales se trouvent dans l'investigation et l'évaluation des méthodes d'entraînement efficaces pour MC qui visent à: (i) réduire le temps total de l'entraînement, et (ii) améliorer l'efficacité de ces modèles lors de leur utilisation dans les systèmes de TA.D'un côté, le coût d'entraînement et d'inférence peut être réduit (en utilisant l'architecture SOUL ou l'algorithme NCE), ou la convergence peut être accélérée.La dissertation présente une analyse empirique de ces approches pour des tâches de traduction automatique à grande échelle.D'un autre côté, nous proposons un cadre d'apprentissage discriminant qui optimise la performance du système entier ayant incorporé un modèle continu.Les résultats expérimentaux montrent que ce cadre d'entraînement est efficace pour l'apprentissage ainsi que pour l'adaptation des MC au sein des systèmes de TA, ce qui ouvre de nouvelles perspectives prometteuses

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Predicting Linguistic Structure with Incomplete and Cross-Lingual Supervision

    Get PDF
    Contemporary approaches to natural language processing are predominantly based on statistical machine learning from large amounts of text, which has been manually annotated with the linguistic structure of interest. However, such complete supervision is currently only available for the world's major languages, in a limited number of domains and for a limited range of tasks. As an alternative, this dissertation considers methods for linguistic structure prediction that can make use of incomplete and cross-lingual supervision, with the prospect of making linguistic processing tools more widely available at a lower cost. An overarching theme of this work is the use of structured discriminative latent variable models for learning with indirect and ambiguous supervision; as instantiated, these models admit rich model features while retaining efficient learning and inference properties. The first contribution to this end is a latent-variable model for fine-grained sentiment analysis with coarse-grained indirect supervision. The second is a model for cross-lingual word-cluster induction and the application thereof to cross-lingual model transfer. The third is a method for adapting multi-source discriminative cross-lingual transfer models to target languages, by means of typologically informed selective parameter sharing. The fourth is an ambiguity-aware self- and ensemble-training algorithm, which is applied to target language adaptation and relexicalization of delexicalized cross-lingual transfer parsers. The fifth is a set of sequence-labeling models that combine constraints at the level of tokens and types, and an instantiation of these models for part-of-speech tagging with incomplete cross-lingual and crowdsourced supervision. In addition to these contributions, comprehensive overviews are provided of structured prediction with no or incomplete supervision, as well as of learning in the multilingual and cross-lingual settings. Through careful empirical evaluation, it is established that the proposed methods can be used to create substantially more accurate tools for linguistic processing, compared to both unsupervised methods and to recently proposed cross-lingual methods. The empirical support for this claim is particularly strong in the latter case; our models for syntactic dependency parsing and part-of-speech tagging achieve the hitherto best published results for a wide number of target languages, in the setting where no annotated training data is available in the target language

    Cumulative Distribution Functions As The Foundation For Probabilistic Models

    Get PDF
    This thesis discusses applications of probabilistic and connectionist models for constructing and training cumulative distribution functions (CDFs). First, it is shown how existing tools from the copula literature can be combined to build probabilistic models. It is found that this simple construction leads to numerical and scalability issues that make training and inference challenging. Next, several innovative ideas, combining neural networks, automatic differentiation and copula functions, introduce how to assemble black-box probabilistic models. The basic building block is a cumulative distribution function that is straightforward to construct, composed of arithmetic operations and nonlinear functions. There is no need to assume any specific parametric probability density function (PDF), making the model flexible and normalisation unnecessary. The only requirement is to design a computational graph that parameterises monotonically non-decreasing functions with a constrained range. Training can be then performed using standard tools from any neural network software library. Finally, factorial hidden Markov models (FHMMs) for sequential data are presented. It is shown how to leverage cumulative distribution functions in the form of the Gaussian copula and amortised stochastic variational method to encode hidden Markov chains coherently. This approach enables efficient learning and inference to model long sequences of high-dimensional data with long-range dependencies. Tackling such complex problems was impossible with the established FHMM approximate inference algorithm. It is empirically verified on several problems that some of the estimators introduced in this work can perform comparably or better than the currently popular models. Especially for tasks requiring tail-area or marginal probabilities that can be read directly from a cumulative distribution function

    Representation learning for uncertainty-aware clinical decision support

    Get PDF
    Over the last decade, there has been an increasing trend towards digitalization in healthcare, where a growing amount of patient data is collected and stored electronically. These recorded data are known as electronic health records. They are the basis for state-of-the-art research on clinical decision support so that better patient care can be delivered with the help of advanced analytical techniques like machine learning. Among various technical fields in machine learning, representation learning is about learning good representations from raw data to extract useful information for downstream prediction tasks. Deep learning, a crucial class of methods in representation learning, has achieved great success in many fields such as computer vision and natural language processing. These technical breakthroughs would presumably further advance the research and development of data analytics in healthcare. This thesis addresses clinically relevant research questions by developing algorithms based on state-of-the-art representation learning techniques. When a patient visits the hospital, a physician will suggest a treatment in a deterministic manner. Meanwhile, uncertainty comes into play when the past statistics of treatment decisions from various physicians are analyzed, as they would possibly suggest different treatments, depending on their training and experiences. The uncertainty in clinical decision-making processes is the focus of this thesis. The models developed for supporting these processes will therefore have a probabilistic nature. More specifically, the predictions are predictive distributions in regression tasks and probability distributions over, e.g., different treatment decisions, in classification tasks. The first part of the thesis is concerned with prescriptive analytics to provide treatment recommendations. Apart from patient information and treatment decisions, the outcome after the respective treatment is included in learning treatment suggestions. The problem setting is known as learning individualized treatment rules and is formulated as a contextual bandit problem. A general framework for learning individualized treatment rules using data from observational studies is presented based on state-of-the-art representation learning techniques. From various offline evaluation methods, it is shown that the treatment policy in our proposed framework can demonstrate better performance than both physicians and competitive baselines. Subsequently, the uncertainty-aware regression models in diagnostic and predictive analytics are studied. Uncertainty-aware deep kernel learning models are proposed, which allow the estimation of the predictive uncertainty by a pipeline of neural networks and a sparse Gaussian process. By considering the input data structure, respective models are developed for diagnostic medical image data and sequential electronic health records. Various pre-training methods from representation learning are adapted to investigate their impacts on the proposed models. Through extensive experiments, it is shown that the proposed models delivered better performance than common architectures in most cases. More importantly, uncertainty-awareness of the proposed models is illustrated by systematically expressing higher confidence in more accurate predictions and less confidence in less accurate ones. The last part of the thesis is about missing data imputation in descriptive analytics, which provides essential evidence for subsequent decision-making processes. Rather than traditional mean and median imputation, a more advanced solution based on generative adversarial networks is proposed. The presented method takes the categorical nature of patient features into consideration, which enables the stabilization of the adversarial training. It is shown that the proposed method can better improve the predictive accuracy compared to traditional imputation baselines
    corecore