6,221 research outputs found

    Analysis and minimization of bending losses in discrete quantum networks

    Full text link
    We study theoretically the transfer of quantum information along bends in two-dimensional discrete lattices. Our analysis shows that the fidelity of the transfer decreases considerably, as a result of interactions in the neighbourhood of the bend. It is also demonstrated that such losses can be controlled efficiently by the inclusion of a defect. The present results are of relevance to various physical implementations of quantum networks, where geometric imperfections with finite spatial extent may arise as a result of bending, residual stress, etc

    Nanoscale Structure and Elasticity of Pillared DNA Nanotubes

    Full text link
    We present an atomistic model of pillared DNA nanotubes (DNTs) and their elastic properties which will facilitate further studies of these nanotubes in several important nanotechnological and biological applications. In particular, we introduce a computational design to create an atomistic model of a 6-helix DNT (6HB) along with its two variants, 6HB flanked symmetrically by two double helical DNA pillars (6HB+2) and 6HB flanked symmetrically by three double helical DNA pillars (6HB+3). Analysis of 200 ns all-atom simulation trajectories in the presence of explicit water and ions shows that these structures are stable and well behaved in all three geometries. Hydrogen bonding is well maintained for all variants of 6HB DNTs. We calculate the persistence length of these nanotubes from their equilibrium bend angle distributions. The values of persistence length are ~10 {\mu}m, which is 2 orders of magnitude larger than that of dsDNA. We also find a gradual increase of persistence length with an increasing number of pillars, in quantitative agreement with previous experimental findings. To have a quantitative understanding of the stretch modulus of these tubes we carried out nonequilibrium Steered Molecular Dynamics (SMD). The linear part of the force extension plot gives stretch modulus in the range of 6500 pN for 6HB without pillars which increases to 11,000 pN for tubes with three pillars. The values of the stretch modulus calculated from contour length distributions obtained from equilibrium MD simulations are similar to those obtained from nonequilibrium SMD simulations. The addition of pillars makes these DNTs very rigid.Comment: Published in ACS Nan

    Effect of flow pattern at pipe bends on corrosion behaviour of low carbon steek and its challenges

    Get PDF
    Recent design work regarding seawater flow lines has emphasized the need to identify, develop, and verify critical relationships between corrosion prediction and flow regime mechanisms at pipe bend. In practice this often reduces to an pragmatic interpretation of the effects of corrosion mechanisms at pipe bends. Most importantly the identification of positions or sites, within the internal surface contact areas where the maximum corrosion stimulus may be expected to occur, thereby allowing better understanding, mitigation, monitoring and corrosion control over the life cycle. Some case histories have been reviewed in this context, and the interaction between corrosion mechanisms and flow patterns closely determined, and in some cases correlated. Since the actual relationships are complex, it was determined that a risk based decision making process using selected ā€˜whatā€™ if corrosion analyses linked to ā€˜what ifā€™ flow assurance analyses was the best way forward. Using this in methodology, and pertinent field data exchange, it is postulated that significant improvements in corrosion prediction can be made. This paper outlines the approach used and shows how related corrosion modelling software data such as that available from corrosion models Norsok M5006, and Cassandra to parallel computational flow modelling in a targeted manner can generate very noteworthy results, and considerably more viable trends for corrosion control guidance. It is postulated that the normally associated lack of agreement between corrosion modelling and field experience, is more likely due to inadequate consideration of corrosion stimulating flow regime data, rather than limitations of the corrosion modelling. Applications of flow visualization studies as well as computations with the k-Īµ model of turbulence have identified flow features and regions where metal loss is a maximu

    Molecular structure refinement by direct fitting of atomic coordinates to experimental ESR spectra

    Full text link
    An attempt is made to bypass spectral analysis and fit internal coordinates of radicals directly to experimental liquid- and solid-state electron spin resonance (ESR) spectra. We take advantage of the recently introduced large-scale spin dynamics simulation algorithms and of the fact that the accuracy of quantum mechanical calculations of ESR parameters has improved to the point of quantitative correctness. Partial solutions are offered to the local minimum problem in spectral fitting and to the problem of spin interaction parameters (hyperfine couplings, chemical shifts, etc.) being very sensitive to distortions in molecular geometry.Comment: Submitted for publicatio

    Predicting Transcription Factor Specificity with All-Atom Models

    Get PDF
    The binding of a transcription factor (TF) to a DNA operator site can initiate or repress the expression of a gene. Computational prediction of sites recognized by a TF has traditionally relied upon knowledge of several cognate sites, rather than an ab initio approach. Here, we examine the possibility of using structure-based energy calculations that require no knowledge of bound sites but rather start with the structure of a protein-DNA complex. We study the PurR E. coli TF, and explore to which extent atomistic models of protein-DNA complexes can be used to distinguish between cognate and non-cognate DNA sites. Particular emphasis is placed on systematic evaluation of this approach by comparing its performance with bioinformatic methods, by testing it against random decoys and sites of homologous TFs. We also examine a set of experimental mutations in both DNA and the protein. Using our explicit estimates of energy, we show that the specificity for PurR is dominated by direct protein-DNA interactions, and weakly influenced by bending of DNA.Comment: 26 pages, 3 figure
    • ā€¦
    corecore