42 research outputs found

    Accelerated Aging in Devices and Circuits

    Get PDF
    abstract: The aging mechanism in devices is prone to uncertainties due to dynamic stress conditions. In AMS circuits these can lead to momentary fluctuations in circuit voltage that may be missed by a compact model and hence cause unpredictable failure. Firstly, multiple aging effects in the devices may have underlying correlations. The generation of new traps during TDDB may significantly accelerate BTI, since these traps are close to the dielectric-Si interface in scaled technology. Secondly, the prevalent reliability analysis lacks a direct validation of the lifetime of devices and circuits. The aging mechanism of BTI causes gradual degradation of the device leading to threshold voltage shift and increasing the failure rate. In the 28nm HKMG technology, contribution of BTI to NMOS degradation has become significant at high temperature as compared to Channel Hot Carrier (CHC). This requires revising the End of Lifetime (EOL) calculation based on contribution from induvial aging effects especially in feedback loops. Conventionally, aging in devices is extrapolated from a short-term measurement, but this practice results in unreliable prediction of EOL caused by variability in initial parameters and stress conditions. To mitigate the extrapolation issues and improve predictability, this work aims at providing a new approach to test the device to EOL in a fast and controllable manner. The contributions of this thesis include: (1) based on stochastic trapping/de-trapping mechanism, new compact BTI models are developed and verified with 14nm FinFET and 28nm HKMG data. Moreover, these models are implemented into circuit simulation, illustrating a significant increase in failure rate due to accelerated BTI, (2) developing a model to predict accelerated aging under special conditions like feedback loops and stacked inverters, (3) introducing a feedback loop based test methodology called Adaptive Accelerated Aging (AAA) that can generate accurate aging data till EOL, (4) presenting simulation and experimental data for the models and providing test setup for multiple stress conditions, including those for achieving EOL in 1 hour device as well as ring oscillator (RO) circuit for validation of the proposed methodology, and (5) scaling these models for finding a guard band for VLSI design circuits that can provide realistic aging impact.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Characterization of self-heating effects and assessment of its impact on reliability in finfet technology

    Get PDF
    The systematically growing power (heat) dissipation in CMOS transistors with each successive technology node is reaching levels which could impact its reliable operation. The emergence of technologies such as bulk/SOI FinFETs has dramatically confined the heat in the device channel due to its vertical geometry and it is expected to further exacerbate with gate-all-around transistors. This work studies heat generation in the channel of semiconductor devices and measures its dissipation by means of wafer level characterization and predictive thermal simulation. The experimental work is based on several existing device thermometry techniques to which additional layout improvements are made in state of the art bulk FinFET and SOI FinFET 14nm technology nodes. The sensors produce excellent matching results which are confirmed through TCAD thermal simulation, differences between sensor types are quantified and error bars on measurements are established. The lateral heat transport measurements determine that heat from the source is mostly dissipated at a distance of 1µm and 1.5µm in bulk FinFET and SOI FinFET, respectively. Heat additivity is successfully confirmed to prove and highlight the fact that the whole system needs to be considered when performing thermal analysis. Furthermore, an investigation is devoted to study self-heating with different layout densities by varying the number of fins and fingers per active region (RX). Fin thermal resistance is measured at different ambient temperatures to show its variation of up to 70% between -40°C to 175°C. Therefore, the Si fin has a more dominant effect in heat transport and its varying thermal conductivity should be taken into account. The effect of ambient temperature on self-heating measurement is confirmed by supplying heat through thermal chuck and adjacent heater devices themselves. Motivation for this work is the continuous evolution of the transistor geometry and use of exotic materials, which in the recent technology nodes made heat removal more challenging. This poses reliability and performance concerns. Therefore, this work studies the impact of self-heating on reliability testing at DC conditions as well as realistic CMOS logic operating (AC) conditions. Front-end-of-line (FEOL) reliability mechanisms, such as hot carrier injection (HCI) and non-uniform time dependent dielectric breakdown (TDDB), are studied to show that self-heating effects can impact measurement results and recommendations are given on how to mitigate them. By performing an HCI stress at moderate bias conditions, this dissertation shows that the laborious techniques of heat subtraction are no longer necessary. Self-heating is also studied at more realistic device switching conditions by utilizing ring oscillators with several densities and stage counts to show that self-heating is considerably lower compared to constant voltage stress conditions and degradation is not distinguishable

    Defect Induced Aging and Breakdown in High-k Dielectrics

    Get PDF
    abstract: High-k dielectrics have been employed in the metal-oxide semiconductor field effect transistors (MOSFETs) since 45 nm technology node. In this MOSFET industry, Moore’s law projects the feature size of MOSFET scales half within every 18 months. Such scaling down theory has not only led to the physical limit of manufacturing but also raised the reliability issues in MOSFETs. After the incorporation of HfO2 based high-k dielectrics, the stacked oxides based gate insulator is facing rather challenging reliability issues due to the vulnerable HfO2 layer, ultra-thin interfacial SiO2 layer, and even messy interface between SiO2 and HfO2. Bias temperature instabilities (BTI), hot channel electrons injections (HCI), stress-induced leakage current (SILC), and time dependent dielectric breakdown (TDDB) are the four most prominent reliability challenges impacting the lifetime of the chips under use. In order to fully understand the origins that could potentially challenge the reliability of the MOSFETs the defects induced aging and breakdown of the high-k dielectrics have been profoundly investigated here. BTI aging has been investigated to be related to charging effects from the bulk oxide traps and generations of Si-H bonds related interface traps. CVS and RVS induced dielectric breakdown studies have been performed and investigated. The breakdown process is regarded to be related to oxygen vacancies generations triggered by hot hole injections from anode. Post breakdown conduction study in the RRAM devices have shown irreversible characteristics of the dielectrics, although the resistance could be switched into high resistance state.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Cross-Layer Approaches for an Aging-Aware Design of Nanoscale Microprocessors

    Get PDF
    Thanks to aggressive scaling of transistor dimensions, computers have revolutionized our life. However, the increasing unreliability of devices fabricated in nanoscale technologies emerged as a major threat for the future success of computers. In particular, accelerated transistor aging is of great importance, as it reduces the lifetime of digital systems. This thesis addresses this challenge by proposing new methods to model, analyze and mitigate aging at microarchitecture-level and above

    Aging-Aware Design Methods for Reliable Analog Integrated Circuits using Operating Point-Dependent Degradation

    Get PDF
    The focus of this thesis is on the development and implementation of aging-aware design methods, which are suitable to satisfy current needs of analog circuit design. Based on the well known \gm/\ID sizing methodology, an innovative tool-assisted aging-aware design approach is proposed, which is able to estimate shifts in circuit characteristics using mostly hand calculation schemes. The developed concept of an operating point-dependent degradation leads to the definition of an aging-aware sensitivity, which is compared to currently available degradation simulation flows and proves to be efficient in the estimation of circuit degradation. Using the aging-aware sensitivity, several analog circuits are investigated and optimized towards higher reliability. Finally, results are presented for numerous target specifications

    On-Chip Delay Measurement for Degradation Detection and Its Evaluation under Accelerated Life Test

    Get PDF
    Periodical delay measurement in field is useful for not only detection of delay-related faults but also prediction of faults due to aging. Logic BIST with variable test clock generation enables on-chip delay measurement in field. This paper addresses a delay measurement scheme based on logic BIST and gives experiment results to observe aging phenomenon of test chips under accelerated life test. The measurement scheme consists of scan-based logic BIST, a variable test clock generator, and digital temperature and voltage sensors. The sensors are used to compensate measured delay values for temperature and voltage variations in field. Evaluation using SPICE simulation shows that the scheme can measure a circuit delay with resolution of 92 ps. The delay measurement scheme is also implemented on fabricated test chips with 180 nm CMOS technology and accelerated test is performed using ATE and burn-in equipment. Experimental results show that a circuit delay increased 552 ps when accelerated the chip for 3000 hours. It is confirmed that the on-chip delay measurement scheme has enough accuracy for detection of aging-induced delay increase.26th IEEE International Symposium on On-Line Testing and Robust System Design (IOLTS 2020), 13-15 July, 2020, Napoli, Italy(新型コロナ感染拡大に伴い、オンライン開催に変更

    Cross-Layer Resiliency Modeling and Optimization: A Device to Circuit Approach

    Get PDF
    The never ending demand for higher performance and lower power consumption pushes the VLSI industry to further scale the technology down. However, further downscaling of technology at nano-scale leads to major challenges. Reduced reliability is one of them, arising from multiple sources e.g. runtime variations, process variation, and transient errors. The objective of this thesis is to tackle unreliability with a cross layer approach from device up to circuit level

    Recovery of hot-carrier degraded nMOSFETs

    Get PDF

    Experimental Characterization of Random Telegraph Noise and Hot Carrier Aging of Nano-scale MOSFETs

    Get PDF
    One of the emerging challenges in the scaling of MOSFETs is the reliability of ultra-thin gate dielectrics. Various sources can cause device aging, such as hot carrier aging (HCA), negative bias temperature instability (NBTI), positive bias temperature instability (PBTI), and time dependent device breakdown (TDDB). Among them, hot carrier aging (HCA) has attracted much attention recently, because it is limiting the device lifetime. As the channel length of MOSFETs becomes smaller, the lateral electrical field increases and charge carriers become sufficiently energetic (“hot”) to cause damage to the device when they travel through the space charge region near the drain. Unlike aging that causes device parameters, such as threshold voltage, to drift in one direction, nano-scale devices also suffer from Random Telegraph Noise (RTN), where the current can fluctuate under fixed biases. RTN is caused by capturing/emitting charge carriers from/to the conduction channel. As the device sizes are reduced to the nano-meters, a single trap can cause substantial fluctuation in the current and threshold voltage. Although early works on HCA and RTN have improved the understanding, many issues remain unresolved and the aim of this project is to address these issues. The project is broadly divided into three parts: (i) an investigation on the HCA kinetics and how to predict HCA-induced device lifetime, (ii) a study of the interaction between HCA and RTN, and (iii) developing a new technique for directly measuring the RTN-induced jitter in the threshold voltage. To predict the device lifetime, a reliable aging kinetics is indispensable. Although early works show that HCA follows a power law, there are uncertainties in the extraction of the time exponent, making the prediction doubtful. A systematic experimental investigation was carried out in Chapter 4 and both the stress conditions and measurement parameters were carefully selected. It was found that the forward saturation current, commonly used in early work for monitoring HCA, leads to an overestimation of time exponents, because part of the damaged region is screened off by the space charges near the drain. Another source of errors comes from the inclusion of as-grown defects in the aging kinetics, which is not caused by aging. This leads to an underestimation of the time exponent. After correcting these errors, a reliable HCA kinetics is established and its predictive capability is demonstrated. There is confusion on how HCA and RTN interact and this is researched into in Chapter 5. The results show that for a device of average RTN, HCA only has a modest impact on RTN. RTN can either increase or decrease after HCA, depending on whether the local current under the RTN traps is rising or reducing. For a device of abnormally high RTN, RTN reduces substantially after HCA and the mechanism for this reduction is explored. The RTN-induced threshold voltage jitter, ∆Vth, is difficult to measure, as it is typically small and highly dynamic. Early works estimate this ∆Vth from the change in drain current and the accuracy of this estimation is not known. Chapter 6 focuses on developing a new ‘Trigger-When-Charged’ technique for directly measuring the RTN-induced ∆Vth. It will be shown that early works overestimate ∆Vth by a factor of two and the origin of this overestimation is investigated. This thesis consists of seven chapters. Chapter 1 introduces the project and its objectives. A literature review is given in Chapter 2. Chapter 3 covers the test facilities, measurement techniques, and devices used in this project. The main experimental results and analysis are given in Chapters 4-6, as described above. Finally, Chapter 7 concludes the project and discusses future works
    corecore