554 research outputs found

    Nonlinear unmixing of hyperspectral images: Models and algorithms

    Get PDF
    When considering the problem of unmixing hyperspectral images, most of the literature in the geoscience and image processing areas relies on the widely used linear mixing model (LMM). However, the LMM may be not valid, and other nonlinear models need to be considered, for instance, when there are multiscattering effects or intimate interactions. Consequently, over the last few years, several significant contributions have been proposed to overcome the limitations inherent in the LMM. In this article, we present an overview of recent advances in nonlinear unmixing modeling

    A probablistic framework for classification and fusion of remotely sensed hyperspectral data

    Get PDF
    Reliable and accurate material identification is a crucial component underlying higher-level autonomous tasks within the context of autonomous mining. Such tasks can include exploration, reconnaissance and guidance of machines (e.g. autonomous diggers and haul trucks) to mine sites. This thesis focuses on the problem of classification of materials (rocks and minerals) using high spatial and high spectral resolution (hyperspectral) imagery, collected remotely from mine faces in operational open pit mines. A new method is developed for the classification of hyperspectral data including field spectra and imagery using a probabilistic framework and Gaussian Process regression. The developed method uses, for the first time, the Observation Angle Dependent (OAD) covariance function to classify high-dimensional sets of data. The performance of the proposed method of classification is assessed and compared to standard methods used for the classification of hyperspectral data. This is done using a staged experimental framework. First, the proposed method is tested using high-resolution field spectrometer data acquired in the laboratory and in the field. Second, the method is extended to work on hyperspectral imagery acquired in the laboratory and its performance evaluated. Finally, the method is evaluated for imagery acquired from a mine face under natural illumination and the use of independent spectral libraries to classify imagery is explored. A probabilistic framework was selected because it best enables the integration of internal and external information from a variety of sensors. To demonstrate advantages of the proposed GP-OAD method over existing, deterministic methods, a new framework is proposed to fuse hyperspectral images using the classified probabilistic outputs from several different images acquired of the same mine face. This method maximises the amount of information but reduces the amount of data by condensing all available information into a single map. Thus, the proposed fusion framework removes the need to manually select a single classification among many individual classifications of a mine face as the `best' one and increases the classification performance by combining more information. The methods proposed in this thesis are steps forward towards an automated mine face inspection system that can be used within the existing autonomous mining framework to improve productivity and efficiency. Last but not least the proposed methods will also contribute to increased mine safety

    Hyper-Spectral Image Analysis with Partially-Latent Regression and Spatial Markov Dependencies

    Get PDF
    Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.Comment: 12 pages, 4 figures, 3 table

    From representation learning to thematic classification - Application to hierarchical analysis of hyperspectral images

    Get PDF
    Numerous frameworks have been developed in order to analyze the increasing amount of available image data. Among those methods, supervised classification has received considerable attention leading to the development of state-of-the-art classification methods. These methods aim at inferring the class of each observation given a specific class nomenclature by exploiting a set of labeled observations. Thanks to extensive research efforts of the community, classification methods have become very efficient. Nevertheless, the results of a classification remains a highlevel interpretation of the scene since it only gives a single class to summarize all information in a given pixel. Contrary to classification methods, representation learning methods are model-based approaches designed especially to handle high-dimensional data and extract meaningful latent variables. By using physic-based models, these methods allow the user to extract very meaningful variables and get a very detailed interpretation of the considered image. The main objective of this thesis is to develop a unified framework for classification and representation learning. These two methods provide complementary approaches allowing to address the problem using a hierarchical modeling approach. The representation learning approach is used to build a low-level model of the data whereas classification is used to incorporate supervised information and may be seen as a high-level interpretation of the data. Two different paradigms, namely Bayesian models and optimization approaches, are explored to set up this hierarchical model. The proposed models are then tested in the specific context of hyperspectral imaging where the representation learning task is specified as a spectral unmixing proble

    Machine Learning for Robust Understanding of Scene Materials in Hyperspectral Images

    Get PDF
    The major challenges in hyperspectral (HS) imaging and data analysis are expensive sensors, high dimensionality of the signal, limited ground truth, and spectral variability. This dissertation develops and analyzes machine learning based methods to address these problems. In the first part, we examine one of the most important HS data analysis tasks-vegetation parameter estimation. We present two Gaussian processes based approaches for improving the accuracy of vegetation parameter retrieval when ground truth is limited and/or spectral variability is high. The first is the adoption of covariance functions based on well-established metrics, such as, spectral angle and spectral correlation, which are known to be better measures of similarity for spectral data. The second is the joint modeling of related vegetation parameters by multitask Gaussian processes so that the prediction accuracy of the vegetation parameter of interest can be improved with the aid of related vegetation parameters for which a larger set of ground truth is available. The efficacy of the proposed methods is demonstrated by comparing them against state-of-the art approaches on three real-world HS datasets and one synthetic dataset. In the second part, we demonstrate how Bayesian optimization can be applied to jointly tune the different components of hyperspectral data analysis frameworks for better performance. Experimental validation on the spatial-spectral classification framework consisting of a classifier and a Markov random field is provided. In the third part, we investigate whether high dimensional HS spectra can be reconstructed from low dimensional multispectral (MS) signals, that can be obtained from much cheaper, lower spectral resolution sensors. A novel end-to-end convolutional residual neural network architecture is proposed that can simultaneously optimize both the MS bands and the transformation to reconstruct HS spectra from MS signals by analyzing a large quantity of HS data. The learned band can be implemented in sensor hardware and the learned transformation can be incorporated in the data processing pipeline to build a low-cost hyperspectral data collection system. Using a diverse set of real-world datasets, we show how the proposed approach of optimizing MS bands along with the transformation rather than just optimizing the transformation with fixed bands, as proposed by previous studies, can drastically increase the reconstruction accuracy. Additionally, we also investigate the prospects of using reconstructed HS spectra for land cover classification

    Spectral Textile Detection in the VNIR/SWIR Band

    Get PDF
    Dismount detection, the detection of persons on the ground and outside of a vehicle, has applications in search and rescue, security, and surveillance. Spatial dismount detection methods lose e effectiveness at long ranges, and spectral dismount detection currently relies on detecting skin pixels. In scenarios where skin is not exposed, spectral textile detection is a more effective means of detecting dismounts. This thesis demonstrates the effectiveness of spectral textile detectors on both real and simulated hyperspectral remotely sensed data. Feature selection methods determine sets of wavebands relevant to spectral textile detection. Classifiers are trained on hyperspectral contact data with the selected wavebands, and classifier parameters are optimized to improve performance on a training set. Classifiers with optimized parameters are used to classify contact data with artificially added noise and remotely-sensed hyperspectral data. The performance of optimized classifiers on hyperspectral data is measured with Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve. The best performances on the contact data are 0.892 and 0.872 for Multilayer Perceptrons (MLPs) and Support Vector Machines (SVMs), respectively. The best performances on the remotely-sensed data are AUC = 0.947 and AUC = 0.970 for MLPs and SVMs, respectively. The difference in classifier performance between the contact and remotely-sensed data is due to the greater variety of textiles represented in the contact data. Spectral textile detection is more reliable in scenarios with a small variety of textiles

    Reconstruction Error and Principal Component Based Anomaly Detection in Hyperspectral imagery

    Get PDF
    The rapid expansion of remote sensing and information collection capabilities demands methods to highlight interesting or anomalous patterns within an overabundance of data. This research addresses this issue for hyperspectral imagery (HSI). Two new reconstruction based HSI anomaly detectors are outlined: one using principal component analysis (PCA), and the other a form of non-linear PCA called logistic principal component analysis. Two very effective, yet relatively simple, modifications to the autonomous global anomaly detector are also presented, improving algorithm performance and enabling receiver operating characteristic analysis. A novel technique for HSI anomaly detection dubbed multiple PCA is introduced and found to perform as well or better than existing detectors on HYDICE data while using only linear deterministic methods. Finally, a response surface based optimization is performed on algorithm parameters such as to affect consistent desired algorithm performance

    Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review

    Get PDF
    Modern hyperspectral imaging systems produce huge datasets potentially conveying a great abundance of information; such a resource, however, poses many challenges in the analysis and interpretation of these data. Deep learning approaches certainly offer a great variety of opportunities for solving classical imaging tasks and also for approaching new stimulating problems in the spatial–spectral domain. This is fundamental in the driving sector of Remote Sensing where hyperspectral technology was born and has mostly developed, but it is perhaps even more true in the multitude of current and evolving application sectors that involve these imaging technologies. The present review develops on two fronts: on the one hand, it is aimed at domain professionals who want to have an updated overview on how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, we want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields other than Remote Sensing are the original contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends
    corecore