568 research outputs found

    Learning to Extract Keyphrases from Text

    Get PDF
    Many academic journals ask their authors to provide a list of about five to fifteen key words, to appear on the first page of each article. Since these key words are often phrases of two or more words, we prefer to call them keyphrases. There is a surprisingly wide variety of tasks for which keyphrases are useful, as we discuss in this paper. Recent commercial software, such as Microsoft?s Word 97 and Verity?s Search 97, includes algorithms that automatically extract keyphrases from documents. In this paper, we approach the problem of automatically extracting keyphrases from text as a supervised learning task. We treat a document as a set of phrases, which the learning algorithm must learn to classify as positive or negative examples of keyphrases. Our first set of experiments applies the C4.5 decision tree induction algorithm to this learning task. The second set of experiments applies the GenEx algorithm to the task. We developed the GenEx algorithm specifically for this task. The third set of experiments examines the performance of GenEx on the task of metadata generation, relative to the performance of Microsoft?s Word 97. The fourth and final set of experiments investigates the performance of GenEx on the task of highlighting, relative to Verity?s Search 97. The experimental results support the claim that a specialized learning algorithm (GenEx) can generate better keyphrases than a general-purpose learning algorithm (C4.5) and the non-learning algorithms that are used in commercial software (Word 97 and Search 97)

    Adaptive content mapping for internet navigation

    Get PDF
    The Internet as the biggest human library ever assembled keeps on growing. Although all kinds of information carriers (e.g. audio/video/hybrid file formats) are available, text based documents dominate. It is estimated that about 80% of all information worldwide stored electronically exists in (or can be converted into) text form. More and more, all kinds of documents are generated by means of a text processing system and are therefore available electronically. Nowadays, many printed journals are also published online and may even discontinue to appear in print form tomorrow. This development has many convincing advantages: the documents are both available faster (cf. prepress services) and cheaper, they can be searched more easily, the physical storage only needs a fraction of the space previously necessary and the medium will not age. For most people, fast and easy access is the most interesting feature of the new age; computer-aided search for specific documents or Web pages becomes the basic tool for information-oriented work. But this tool has problems. The current keyword based search machines available on the Internet are not really appropriate for such a task; either there are (way) too many documents matching the specified keywords are presented or none at all. The problem lies in the fact that it is often very difficult to choose appropriate terms describing the desired topic in the first place. This contribution discusses the current state-of-the-art techniques in content-based searching (along with common visualization/browsing approaches) and proposes a particular adaptive solution for intuitive Internet document navigation, which not only enables the user to provide full texts instead of manually selected keywords (if available), but also allows him/her to explore the whole database

    Learning algorithms for keyphrase extraction

    Get PDF
    Many academic journals ask their authors to provide a list of about five to fifteen keywords, to appear on the first page of each article. Since these key words are often phrases of two or more words, we prefer to call them keyphrases. There is a wide variety of tasks for which keyphrases are useful, as we discuss in this paper. We approach the problem of automatically extracting keyphrases from text as a supervised learning task. We treat a document as a set of phrases, which the learning algorithm must learn to classify as positive or negative examples of keyphrases. Our first set of experiments applies the C4.5 decision tree induction algorithm to this learning task. We evaluate the performance of nine different configurations of C4.5. The second set of experiments applies the GenEx algorithm to the task. We developed the GenEx algorithm specifically for automatically extracting keyphrases from text. The experimental results support the claim that a custom-designed algorithm (GenEx), incorporating specialized procedural domain knowledge, can generate better keyphrases than a general-purpose algorithm (C4.5). Subjective human evaluation of the keyphrases generated by GenEx suggests that about 80% of the keyphrases are acceptable to human readers. This level of performance should be satisfactory for a wide variety of applications

    Organization and Usage of Learning Objects within Personal Computers

    Get PDF
    Research report of the ProLearn Network of Excellence (IST 507310), Deliverable 7.6To promote the integration of Desktop related Knowledge Management and Technology Enhanced Learning this deliverable aims at increasing the awareness of Desktop research within the Professional Learning community and at familiarizing the e-Learning researchers with the state-of-the-art in the relevant areas of Personal Information Management (PIM), as well as with the currently on-going activities and some of the regular PIM publication venues

    Corpora for Computational Linguistics

    Get PDF
    Since the mid 90s corpora has become very important for computational linguistics. This paper offers a survey of how they are currently used in different fields of the discipline, with particular emphasis on anaphora and coreference resolution, automatic summarisation and term extraction. Their influence on other fields is also briefly discussed
    • …
    corecore