487 research outputs found

    Abstractive Text Classification Using Sequence-to-convolution Neural Networks

    Full text link
    We propose a new deep neural network model and its training scheme for text classification. Our model Sequence-to-convolution Neural Networks(Seq2CNN) consists of two blocks: Sequential Block that summarizes input texts and Convolution Block that receives summary of input and classifies it to a label. Seq2CNN is trained end-to-end to classify various-length texts without preprocessing inputs into fixed length. We also present Gradual Weight Shift(GWS) method that stabilizes training. GWS is applied to our model's loss function. We compared our model with word-based TextCNN trained with different data preprocessing methods. We obtained significant improvement in classification accuracy over word-based TextCNN without any ensemble or data augmentation

    Learning to Extract Coherent Summary via Deep Reinforcement Learning

    Full text link
    Coherence plays a critical role in producing a high-quality summary from a document. In recent years, neural extractive summarization is becoming increasingly attractive. However, most of them ignore the coherence of summaries when extracting sentences. As an effort towards extracting coherent summaries, we propose a neural coherence model to capture the cross-sentence semantic and syntactic coherence patterns. The proposed neural coherence model obviates the need for feature engineering and can be trained in an end-to-end fashion using unlabeled data. Empirical results show that the proposed neural coherence model can efficiently capture the cross-sentence coherence patterns. Using the combined output of the neural coherence model and ROUGE package as the reward, we design a reinforcement learning method to train a proposed neural extractive summarizer which is named Reinforced Neural Extractive Summarization (RNES) model. The RNES model learns to optimize coherence and informative importance of the summary simultaneously. Experimental results show that the proposed RNES outperforms existing baselines and achieves state-of-the-art performance in term of ROUGE on CNN/Daily Mail dataset. The qualitative evaluation indicates that summaries produced by RNES are more coherent and readable.Comment: 8 pages, 1 figure, presented at AAAI-201

    Deconvolutional Paragraph Representation Learning

    Full text link
    Learning latent representations from long text sequences is an important first step in many natural language processing applications. Recurrent Neural Networks (RNNs) have become a cornerstone for this challenging task. However, the quality of sentences during RNN-based decoding (reconstruction) decreases with the length of the text. We propose a sequence-to-sequence, purely convolutional and deconvolutional autoencoding framework that is free of the above issue, while also being computationally efficient. The proposed method is simple, easy to implement and can be leveraged as a building block for many applications. We show empirically that compared to RNNs, our framework is better at reconstructing and correcting long paragraphs. Quantitative evaluation on semi-supervised text classification and summarization tasks demonstrate the potential for better utilization of long unlabeled text data.Comment: Accepted by NIPS 201

    Distilling Knowledge Learned in BERT for Text Generation

    Full text link
    Large-scale pre-trained language model such as BERT has achieved great success in language understanding tasks. However, it remains an open question how to utilize BERT for language generation. In this paper, we present a novel approach, Conditional Masked Language Modeling (C-MLM), to enable the finetuning of BERT on target generation tasks. The finetuned BERT (teacher) is exploited as extra supervision to improve conventional Seq2Seq models (student) for better text generation performance. By leveraging BERT's idiosyncratic bidirectional nature, distilling knowledge learned in BERT can encourage auto-regressive Seq2Seq models to plan ahead, imposing global sequence-level supervision for coherent text generation. Experiments show that the proposed approach significantly outperforms strong Transformer baselines on multiple language generation tasks such as machine translation and text summarization. Our proposed model also achieves new state of the art on IWSLT German-English and English-Vietnamese MT datasets. Code is available at https://github.com/ChenRocks/Distill-BERT-Textgen.Comment: ACL 202

    The Natural Language Decathlon: Multitask Learning as Question Answering

    Full text link
    Deep learning has improved performance on many natural language processing (NLP) tasks individually. However, general NLP models cannot emerge within a paradigm that focuses on the particularities of a single metric, dataset, and task. We introduce the Natural Language Decathlon (decaNLP), a challenge that spans ten tasks: question answering, machine translation, summarization, natural language inference, sentiment analysis, semantic role labeling, zero-shot relation extraction, goal-oriented dialogue, semantic parsing, and commonsense pronoun resolution. We cast all tasks as question answering over a context. Furthermore, we present a new Multitask Question Answering Network (MQAN) jointly learns all tasks in decaNLP without any task-specific modules or parameters in the multitask setting. MQAN shows improvements in transfer learning for machine translation and named entity recognition, domain adaptation for sentiment analysis and natural language inference, and zero-shot capabilities for text classification. We demonstrate that the MQAN's multi-pointer-generator decoder is key to this success and performance further improves with an anti-curriculum training strategy. Though designed for decaNLP, MQAN also achieves state of the art results on the WikiSQL semantic parsing task in the single-task setting. We also release code for procuring and processing data, training and evaluating models, and reproducing all experiments for decaNLP

    Dial2Desc: End-to-end Dialogue Description Generation

    Full text link
    We first propose a new task named Dialogue Description (Dial2Desc). Unlike other existing dialogue summarization tasks such as meeting summarization, we do not maintain the natural flow of a conversation but describe an object or an action of what people are talking about. The Dial2Desc system takes a dialogue text as input, then outputs a concise description of the object or the action involved in this conversation. After reading this short description, one can quickly extract the main topic of a conversation and build a clear picture in his mind, without reading or listening to the whole conversation. Based on the existing dialogue dataset, we build a new dataset, which has more than one hundred thousand dialogue-description pairs. As a step forward, we demonstrate that one can get more accurate and descriptive results using a new neural attentive model that exploits the interaction between utterances from different speakers, compared with other baselines

    Abstractive and Extractive Text Summarization using Document Context Vector and Recurrent Neural Networks

    Full text link
    Sequence to sequence (Seq2Seq) learning has recently been used for abstractive and extractive summarization. In current study, Seq2Seq models have been used for eBay product description summarization. We propose a novel Document-Context based Seq2Seq models using RNNs for abstractive and extractive summarizations. Intuitively, this is similar to humans reading the title, abstract or any other contextual information before reading the document. This gives humans a high-level idea of what the document is about. We use this idea and propose that Seq2Seq models should be started with contextual information at the first time-step of the input to obtain better summaries. In this manner, the output summaries are more document centric, than being generic, overcoming one of the major hurdles of using generative models. We generate document-context from user-behavior and seller provided information. We train and evaluate our models on human-extracted-golden-summaries. The document-contextual Seq2Seq models outperform standard Seq2Seq models. Moreover, generating human extracted summaries is prohibitively expensive to scale, we therefore propose a semi-supervised technique for extracting approximate summaries and using it for training Seq2Seq models at scale. Semi-supervised models are evaluated against human extracted summaries and are found to be of similar efficacy. We provide side by side comparison for abstractive and extractive summarizers (contextual and non-contextual) on same evaluation dataset. Overall, we provide methodologies to use and evaluate the proposed techniques for large document summarization. Furthermore, we found these techniques to be highly effective, which is not the case with existing techniques.Comment: ACM KDD 2018 Deep Learning Da

    Convolutional Sequence to Sequence Learning

    Full text link
    The prevalent approach to sequence to sequence learning maps an input sequence to a variable length output sequence via recurrent neural networks. We introduce an architecture based entirely on convolutional neural networks. Compared to recurrent models, computations over all elements can be fully parallelized during training and optimization is easier since the number of non-linearities is fixed and independent of the input length. Our use of gated linear units eases gradient propagation and we equip each decoder layer with a separate attention module. We outperform the accuracy of the deep LSTM setup of Wu et al. (2016) on both WMT'14 English-German and WMT'14 English-French translation at an order of magnitude faster speed, both on GPU and CPU

    Neural Extractive Summarization with Side Information

    Full text link
    Most extractive summarization methods focus on the main body of the document from which sentences need to be extracted. However, the gist of the document may lie in side information, such as the title and image captions which are often available for newswire articles. We propose to explore side information in the context of single-document extractive summarization. We develop a framework for single-document summarization composed of a hierarchical document encoder and an attention-based extractor with attention over side information. We evaluate our model on a large scale news dataset. We show that extractive summarization with side information consistently outperforms its counterpart that does not use any side information, in terms of both informativeness and fluency.Comment: 9 page

    Doc2Im: document to image conversion through self-attentive embedding

    Full text link
    Text classification is a fundamental task in NLP applications. Latest research in this field has largely been divided into two major sub-fields. Learning representations is one sub-field and learning deeper models, both sequential and convolutional, which again connects back to the representation is the other side. We posit the idea that the stronger the representation is, the simpler classifier models are needed to achieve higher performance. In this paper we propose a completely novel direction to text classification research, wherein we convert text to a representation very similar to images, such that any deep network able to handle images is equally able to handle text. We take a deeper look at the representation of documents as an image and subsequently utilize very simple convolution based models taken as is from computer vision domain. This image can be cropped, re-scaled, re-sampled and augmented just like any other image to work with most of the state-of-the-art large convolution based models which have been designed to handle large image datasets. We show impressive results with some of the latest benchmarks in the related fields. We perform transfer learning experiments, both from text to text domain and also from image to text domain. We believe this is a paradigm shift from the way document understanding and text classification has been traditionally done, and will drive numerous novel research ideas in the community
    • …
    corecore