11 research outputs found

    Case Based Representation and Retrieval with Time Dependent Features

    Full text link
    Abstract. The temporal dimension of the knowledge embedded in cases has often been neglected or oversimplified in Case Based Reasoning sys-tems. However, in several real world problems a case should capture the evolution of the observed phenomenon over time. To this end, we propose to represent temporal information at two levels: (1) at the case level, if some features describe parameters varying within a period of time (which corresponds to the case duration), and are therefore collected in the form of time series; (2) at the history level, if the evolution of the system can be reconstructed by retrieving temporally related cases. In this paper, we describe a framework for case representation and retrieval able to take into account the temporal dimension, and meant to be used in any time dependent domain. In particular, to support case retrieval, we provide an analysis of similarity-based time series retrieval techniques; to support history retrieval, we introduce possible ways to summarize the case content, together with the corresponding strategies for identifying similar instances in the knowledge base. A concrete ap-plication of our framework is represented by the system RHENE, which is briefly sketched here, and extensively described in [20].

    Acta Polytechnica Hungarica 2006

    Get PDF

    Social work with airports passengers

    Get PDF
    Social work at the airport is in to offer to passengers social services. The main methodological position is that people are under stress, which characterized by a particular set of characteristics in appearance and behavior. In such circumstances passenger attracts in his actions some attention. Only person whom he trusts can help him with the documents or psychologically

    Utvrđivanje povezanosti genotipa i fenotipa hipertrofične kardiomiopatije primenom mašinskog učenja

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is the most prevailing heritable cardiomyopathy. HCM is diagnosed by the existence of left ventricular hypertrophy despite the lack of abnormal loading conditions causing it. HCM is a heterogeneous disease regarding genetic mutations. Clinical manifestations and prognosis vary widely as well. Some patients are completely asymptomatic, in some others, severe heart failure and sudden cardiac death may arise. Definitive genotype-phenotype associations are still unknown. Machine learning (ML) is a subdiscipline of artificial intelligence, wherein computer algorithms are used for learning complex patterns from data. The aim of this research was to decipher genotype-phenotype associations in HCM using ML. The study was multi-centric and retroprospective, and involved 143 adult HCM patients. Medical and family history, anthropometric measurements, genetic testing, blood markers, transthoracic echocardiography with Doppler, cardiopulmonary exercise testing (CPET), ECG and ECG-holter-monitoring data were collected and further analysed. HCM subphenotypes were identified using clustering. Associations of genotype and phenotype were evaluated used Python modules Scikit-learn and SHapley Additive exPlanation (SHAP). Genotype-specific echocardiogram findings were identified using Python deep learning (DL) and computer vision library Fast AI, by generation of DL models for classification of ultrasonic images, and later analysis of the most decisive image regions. Four HCM subtypes were identified based on the overall phenotypic appearance: cluster 0 (“AHOLD”), distinguishable by aortic root diameter (AO) and lactate dehydrogenase (LDH), with values mostly AO > 30 mm, and LDH > 300 U/L; cluster 1 (“RVSP ASCAOVS”), distinguishable by right ventricle systolic pressure (RVSP), diameter of ascending aorta (AscAO), and aortic leaflet separation diameter (AOvs), with the values of RVSP 27 m/s; cluster 2 (“weight”), recognizable by weight, wherein values being mostly > 95 kg; and cluster 3 (“AV LVOT PG”) distinguishable by aortic valve mean pressure gradient (AV meanPG), aortic valve peak pressure gradient (AV maxPG), and left ventricular outflow tract peak gradient (LVOT maxPG) wherein AV maxPG > 15 mmHg, AV meanPG > 6 mmHg, and LVOT maxPG > 15 mmHg. ML algorithms confirmed that the determination of genotype-phenotype associations in HCM is a cumbersome task. Two phenotypic outcomes that can be predicted from mutated genes are the absence or presence of sinus rhythm and the absence or presence of myocardial injury. Models predicting the absence or presence of sinus rhythm had similar performance when they were built using only causative genes and when using all analyzed genes, indicating potential importance of causative genes and irrelevance of non-causative genes for that outcome. On the other hand, models predicting myocardial injury — infarction had better performance when they were built using all analyzed genes (and not just causative ones), indicating a potentially significant role of non-causative genes in that outcome. The ML algorithms were able to predict phenotypic outcomes — fatigue, dyspnea, chest pain, palpitations, syncope, heart murmur, pretibial edema, systolic anterior motion, papillary muscle abnormalities, hypokinesia, atrial fibrillation (AF), first-degree atrioventricular (AV) block, left bundle branch block (LBBB), right bundle branch block (RBBB), left anterior hemiblock, ST segment abnormalities, and negative T wave — using genotypic and phenotypic data. The combination of a mutation in TNNT2 and peak respiratory exchange ratio (RER) contributed the most in predicting fatigue. The combination of a mutation in MYBPC3 and peak VO2 contributed the most in predicting dyspnea. The combination of a mutation in TNNI3 and high-density lipoprotein (HDL) level contributed the most in predicting chest pain. The combination of a mutation in MYH7 and pacemaker/defibrillator implants in family history, as well as the combination of a mutation in TNNT2 and left atrial volume (LAV), contributed the most in predicting heart murmur. Lastly, the combination of a mutation in MYBPC3 and transmitral maximal pressure gradient (MV maxPG) aided the most in predicting negative T wave. Genotype-specific echocardiogram findings were identified: for mutations in the MYH7 gene (vs. mutation not detected), the most discriminative structures are the left ventricular outflow tract, septum, anterior wall, apex, right ventricle, and mitral apparatus; for mutations in the TNNT2 gene (vs. mutation not detected), the most discriminative structures are septum and right ventricle; while for mutations in MYBPC3 gene (vs. mutation not detected) these are septum, left ventricle, and left ventricle chamber. ML has thus been demonstrated to be useful in deciphering genotype-phenotype associations in HCM.Hipertrofična kardiomiopatija (HCM) je najčešća nasledna kardiomiopatija. Dijagnoza HCM se postavlja na osnovu prisustva hipertrofije leve komore, uz isključivanje drugih uzroka hipertrofije. U pogledu genetičkih mutacija, HCM je heterogena bolest. Kliničke manifestacije i prognoza takođe mogu da budu veoma različite. Kod nekih pacijenata HCM je potpuno asimptomatska, dok kod drugih mogu da se razviju teška srčana insuficijencija i iznenadna srčana smrt. Povezanost genotipa i fenotipa HCM još uvek nije u potpunosti utvrđena. Mašinsko učenje je subdisciplina veštačke inteligencije u kojoj se kompjuterski algoritmi koriste za učenje kompleksnih šablona iz podataka. Cilj ovog istraživanja je bilo utvrđivanje povezanosti genotipa i fenotipa HCM primenom mašinskog učenja. Studija je bila multicentrična i retroprospektivna, obuhvatila je 143 odrasla pacijenta sa potvrđenom dijagnozom HCM. Anamnestički podaci, antropometrijska merenja, rezultati genetičkog testiranja, biohemijskih analiza, nalazi transtorakalne ehokardiografije sa doplerom, kardiopulmonalnog testa fizičkim opterećenjem, elektrokardiograma (EKG) i EKG-holter-monitoringa su prikupljeni i korišćeni u daljoj analizi. HCM subfenotipi su identifikovani klasterizacijom. Povezanost genotipa i fenotipa je evaluirana korišćenjem Python modula Scikit-learn i SHapley Additive exPlanation (SHAP). Genotip-specifični nalazi ehokardiograma su identifikovani korišćenjem Python biblioteke za duboko učenje i računarski vid Fast AI, izradom modela za klasifikaciju ehokardiograma i naknadnom analizom regiona koji su najviše doprineli razlikovanju klasa. Četiri podtipa HCM su identifikovana na osnovu svih dostupnih podataka o fenotipu: klaster 0 (“AHOLD”), koji se razlikuje od ostalih na osnovu prečnika korena aorte (AO) i laktat dehidrogenaze (LDH), pri čemu su vrednosti AO > 30 mm i LDH > 300 U/L; klaster 1 (“RVSP ASCAOVS”), koji se razlikuje od ostalih na osnovu sistolnog pritiska desne komore (RVSP), dijametra ascedentne aorte (AscAO), i separacije aortnih kuspisa (AOvs), pri čemu su vrednosti AOvs > 27 m/s, AscAO 95 kg; i klaster 3 (“AV LVOT PG”) koji se razlikuje od ostalih na osnovu srednjeg gradijenta pritisaka nad aortnom valvulom (AV meanPG), maksimalnog gradijenta pritisaka nad aortnom valvulom (AV maxPG), i maksimalnog gradijenta pritisaka nad izlaznim traktom leve komore (LVOT maxPG), pri čemu su vrednosti AV maxPG > 15 mmHg, AV meanPG > 6 mmHg, i LVOT maxPG > 15 mmHg. Algoritmi mašinskog učenja su potvrdili da utvrđivanje povezanosti genotipa i fenotipa HCM nije jednostavan zadatak. Predikcija ishoda fenotipa na osnovu informacije o mutiranim genima je moguća za prisustvo ili odsustvo sinusnog ritma i prisustvo ili odsustvo oštećenja miokarda. Modeli koji vrše predikciju prisustva ili odsustva sinusnog ritma su imali slične performanse kada su izrađeni samo na osnovu uzročnih gena za HCM i kada su izrađeni na osnovu svih analiziranih gena što sugeriše mogući značaj uzročnih gena za HCM i irelevantnost drugih analiziranih gena za ovaj ishod. Modeli koji vrše predikciju oštećenja miokarda su imali bolje performanse kada su korišćeni podaci o svim analiziranim genima (a ne samo o uzročnim genima za HCM), što sugeriše moguću važnu ulogu gena koji nisu uzročni, za ovaj ishod. Algoritmi mašinskog učenja su izvršili predikciju sledećih ishoda na osnovu podataka o genotipu i fenotipu: zamor, dispneja, bol u grudima, palpitacije, sinkopa, šum na srcu, pretibijalni edem, pokretanje mitralnog zalistka unapred (SAM), abnormalnost papilarnih mišića, hipokinezija, atrijalna fibrilacija, atrioventrikularni blok prvog stepena, blok leve grane (LBBB), blok desne grane (RBBB), prednji levi hemiblok, abnormalnosti ST segmenta, i negativni T talas. Prilikom predikcije zamora, najveći doprinos je imala kombinacija mutacije u TNNT2 i maksimalnog odnosa disajne razmene (RER). Prilikom predikcije dispneje najveći doprinos imala je kombinacija mutacije u MYBPC3 i vršne potrošnje kiseonika (peak VO2). Prilikom predikcije bola u grudima, najveći doprinos je imala kombinacija mutacije u TNNI3 i koncentracije lipoproteina visoke gustine (eng. high-density lipoprotein, HDL). Prilikom predikcije šuma na srcu najveći doprinos imala je kombinacija mutacije u MYH7 i podatka o implantiranju pejsmejkera/defibrilatora u porodičnoj istoriji, kao i kombinacija mutacije u TNNT2 i zapremine leve pretkomore (LAV). Prilikom predikcije negativnog T talasa, najveći doprinos imala je kombinacija mutacije u MYBPC3 i vrednosti transmitralnog maksimalnog gradijenta pritiska (MV maxPG). Identifikovani su genotip-specifični nalazi ehokardiograma: za mutaciju u MYH7 genu (nasuprot negativnom rezultatu na mutacije u analiziranim genima), strukture koje najviše utiču na raspoznavanje su septum, izlazni trakt leve komore (LVOT), prednji zid, vrh srca, desna komora i mitralni aparat; za mutaciju u TNNT2 genu (nasuprot negativnom rezultatu na mutacije u analiziranim genima) strukture koje najviše utiču na raspoznavanje su septum i desna komora; dok su za mutaciju u MYBPC3 genu (nasuprot negativnom rezultatu na mutacije u analiziranim genima) ove strukture septum, leva komora i šupljina leve komore. Mašinsko učenje je na ovaj način doprinelo u određenoj meri izučavanju povezanosti genotipa i fenotipa HCM

    Utvrđivanje povezanosti genotipa i fenotipa hipertrofične kardiomiopatije primenom mašinskog učenja

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is the most prevailing heritable cardiomyopathy. HCM is diagnosed by the existence of left ventricular hypertrophy despite the lack of abnormal loading conditions causing it. HCM is a heterogeneous disease regarding genetic mutations. Clinical manifestations and prognosis vary widely as well. Some patients are completely asymptomatic, in some others, severe heart failure and sudden cardiac death may arise. Definitive genotype-phenotype associations are still unknown. Machine learning (ML) is a subdiscipline of artificial intelligence, wherein computer algorithms are used for learning complex patterns from data. The aim of this research was to decipher genotype-phenotype associations in HCM using ML. The study was multi-centric and retroprospective, and involved 143 adult HCM patients. Medical and family history, anthropometric measurements, genetic testing, blood markers, transthoracic echocardiography with Doppler, cardiopulmonary exercise testing (CPET), ECG and ECG-holter-monitoring data were collected and further analysed. HCM subphenotypes were identified using clustering. Associations of genotype and phenotype were evaluated used Python modules Scikit-learn and SHapley Additive exPlanation (SHAP). Genotype-specific echocardiogram findings were identified using Python deep learning (DL) and computer vision library Fast AI, by generation of DL models for classification of ultrasonic images, and later analysis of the most decisive image regions. Four HCM subtypes were identified based on the overall phenotypic appearance: cluster 0 (“AHOLD”), distinguishable by aortic root diameter (AO) and lactate dehydrogenase (LDH), with values mostly AO > 30 mm, and LDH > 300 U/L; cluster 1 (“RVSP ASCAOVS”), distinguishable by right ventricle systolic pressure (RVSP), diameter of ascending aorta (AscAO), and aortic leaflet separation diameter (AOvs), with the values of RVSP 27 m/s; cluster 2 (“weight”), recognizable by weight, wherein values being mostly > 95 kg; and cluster 3 (“AV LVOT PG”) distinguishable by aortic valve mean pressure gradient (AV meanPG), aortic valve peak pressure gradient (AV maxPG), and left ventricular outflow tract peak gradient (LVOT maxPG) wherein AV maxPG > 15 mmHg, AV meanPG > 6 mmHg, and LVOT maxPG > 15 mmHg. ML algorithms confirmed that the determination of genotype-phenotype associations in HCM is a cumbersome task. Two phenotypic outcomes that can be predicted from mutated genes are the absence or presence of sinus rhythm and the absence or presence of myocardial injury. Models predicting the absence or presence of sinus rhythm had similar performance when they were built using only causative genes and when using all analyzed genes, indicating potential importance of causative genes and irrelevance of non-causative genes for that outcome. On the other hand, models predicting myocardial injury — infarction had better performance when they were built using all analyzed genes (and not just causative ones), indicating a potentially significant role of non-causative genes in that outcome. The ML algorithms were able to predict phenotypic outcomes — fatigue, dyspnea, chest pain, palpitations, syncope, heart murmur, pretibial edema, systolic anterior motion, papillary muscle abnormalities, hypokinesia, atrial fibrillation (AF), first-degree atrioventricular (AV) block, left bundle branch block (LBBB), right bundle branch block (RBBB), left anterior hemiblock, ST segment abnormalities, and negative T wave — using genotypic and phenotypic data. The combination of a mutation in TNNT2 and peak respiratory exchange ratio (RER) contributed the most in predicting fatigue. The combination of a mutation in MYBPC3 and peak VO2 contributed the most in predicting dyspnea. The combination of a mutation in TNNI3 and high-density lipoprotein (HDL) level contributed the most in predicting chest pain. The combination of a mutation in MYH7 and pacemaker/defibrillator implants in family history, as well as the combination of a mutation in TNNT2 and left atrial volume (LAV), contributed the most in predicting heart murmur. Lastly, the combination of a mutation in MYBPC3 and transmitral maximal pressure gradient (MV maxPG) aided the most in predicting negative T wave. Genotype-specific echocardiogram findings were identified: for mutations in the MYH7 gene (vs. mutation not detected), the most discriminative structures are the left ventricular outflow tract, septum, anterior wall, apex, right ventricle, and mitral apparatus; for mutations in the TNNT2 gene (vs. mutation not detected), the most discriminative structures are septum and right ventricle; while for mutations in MYBPC3 gene (vs. mutation not detected) these are septum, left ventricle, and left ventricle chamber. ML has thus been demonstrated to be useful in deciphering genotype-phenotype associations in HCM.Hipertrofična kardiomiopatija (HCM) je najčešća nasledna kardiomiopatija. Dijagnoza HCM se postavlja na osnovu prisustva hipertrofije leve komore, uz isključivanje drugih uzroka hipertrofije. U pogledu genetičkih mutacija, HCM je heterogena bolest. Kliničke manifestacije i prognoza takođe mogu da budu veoma različite. Kod nekih pacijenata HCM je potpuno asimptomatska, dok kod drugih mogu da se razviju teška srčana insuficijencija i iznenadna srčana smrt. Povezanost genotipa i fenotipa HCM još uvek nije u potpunosti utvrđena. Mašinsko učenje je subdisciplina veštačke inteligencije u kojoj se kompjuterski algoritmi koriste za učenje kompleksnih šablona iz podataka. Cilj ovog istraživanja je bilo utvrđivanje povezanosti genotipa i fenotipa HCM primenom mašinskog učenja. Studija je bila multicentrična i retroprospektivna, obuhvatila je 143 odrasla pacijenta sa potvrđenom dijagnozom HCM. Anamnestički podaci, antropometrijska merenja, rezultati genetičkog testiranja, biohemijskih analiza, nalazi transtorakalne ehokardiografije sa doplerom, kardiopulmonalnog testa fizičkim opterećenjem, elektrokardiograma (EKG) i EKG-holter-monitoringa su prikupljeni i korišćeni u daljoj analizi. HCM subfenotipi su identifikovani klasterizacijom. Povezanost genotipa i fenotipa je evaluirana korišćenjem Python modula Scikit-learn i SHapley Additive exPlanation (SHAP). Genotip-specifični nalazi ehokardiograma su identifikovani korišćenjem Python biblioteke za duboko učenje i računarski vid Fast AI, izradom modela za klasifikaciju ehokardiograma i naknadnom analizom regiona koji su najviše doprineli razlikovanju klasa. Četiri podtipa HCM su identifikovana na osnovu svih dostupnih podataka o fenotipu: klaster 0 (“AHOLD”), koji se razlikuje od ostalih na osnovu prečnika korena aorte (AO) i laktat dehidrogenaze (LDH), pri čemu su vrednosti AO > 30 mm i LDH > 300 U/L; klaster 1 (“RVSP ASCAOVS”), koji se razlikuje od ostalih na osnovu sistolnog pritiska desne komore (RVSP), dijametra ascedentne aorte (AscAO), i separacije aortnih kuspisa (AOvs), pri čemu su vrednosti AOvs > 27 m/s, AscAO 95 kg; i klaster 3 (“AV LVOT PG”) koji se razlikuje od ostalih na osnovu srednjeg gradijenta pritisaka nad aortnom valvulom (AV meanPG), maksimalnog gradijenta pritisaka nad aortnom valvulom (AV maxPG), i maksimalnog gradijenta pritisaka nad izlaznim traktom leve komore (LVOT maxPG), pri čemu su vrednosti AV maxPG > 15 mmHg, AV meanPG > 6 mmHg, i LVOT maxPG > 15 mmHg. Algoritmi mašinskog učenja su potvrdili da utvrđivanje povezanosti genotipa i fenotipa HCM nije jednostavan zadatak. Predikcija ishoda fenotipa na osnovu informacije o mutiranim genima je moguća za prisustvo ili odsustvo sinusnog ritma i prisustvo ili odsustvo oštećenja miokarda. Modeli koji vrše predikciju prisustva ili odsustva sinusnog ritma su imali slične performanse kada su izrađeni samo na osnovu uzročnih gena za HCM i kada su izrađeni na osnovu svih analiziranih gena što sugeriše mogući značaj uzročnih gena za HCM i irelevantnost drugih analiziranih gena za ovaj ishod. Modeli koji vrše predikciju oštećenja miokarda su imali bolje performanse kada su korišćeni podaci o svim analiziranim genima (a ne samo o uzročnim genima za HCM), što sugeriše moguću važnu ulogu gena koji nisu uzročni, za ovaj ishod. Algoritmi mašinskog učenja su izvršili predikciju sledećih ishoda na osnovu podataka o genotipu i fenotipu: zamor, dispneja, bol u grudima, palpitacije, sinkopa, šum na srcu, pretibijalni edem, pokretanje mitralnog zalistka unapred (SAM), abnormalnost papilarnih mišića, hipokinezija, atrijalna fibrilacija, atrioventrikularni blok prvog stepena, blok leve grane (LBBB), blok desne grane (RBBB), prednji levi hemiblok, abnormalnosti ST segmenta, i negativni T talas. Prilikom predikcije zamora, najveći doprinos je imala kombinacija mutacije u TNNT2 i maksimalnog odnosa disajne razmene (RER). Prilikom predikcije dispneje najveći doprinos imala je kombinacija mutacije u MYBPC3 i vršne potrošnje kiseonika (peak VO2). Prilikom predikcije bola u grudima, najveći doprinos je imala kombinacija mutacije u TNNI3 i koncentracije lipoproteina visoke gustine (eng. high-density lipoprotein, HDL). Prilikom predikcije šuma na srcu najveći doprinos imala je kombinacija mutacije u MYH7 i podatka o implantiranju pejsmejkera/defibrilatora u porodičnoj istoriji, kao i kombinacija mutacije u TNNT2 i zapremine leve pretkomore (LAV). Prilikom predikcije negativnog T talasa, najveći doprinos imala je kombinacija mutacije u MYBPC3 i vrednosti transmitralnog maksimalnog gradijenta pritiska (MV maxPG). Identifikovani su genotip-specifični nalazi ehokardiograma: za mutaciju u MYH7 genu (nasuprot negativnom rezultatu na mutacije u analiziranim genima), strukture koje najviše utiču na raspoznavanje su septum, izlazni trakt leve komore (LVOT), prednji zid, vrh srca, desna komora i mitralni aparat; za mutaciju u TNNT2 genu (nasuprot negativnom rezultatu na mutacije u analiziranim genima) strukture koje najviše utiču na raspoznavanje su septum i desna komora; dok su za mutaciju u MYBPC3 genu (nasuprot negativnom rezultatu na mutacije u analiziranim genima) ove strukture septum, leva komora i šupljina leve komore. Mašinsko učenje je na ovaj način doprinelo u određenoj meri izučavanju povezanosti genotipa i fenotipa HCM

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-
    corecore