36,151 research outputs found

    Integrating security in a group oriented distributed system

    Get PDF
    A distributed security architecture is proposed for incorporation into group oriented distributed systems, and in particular, into the Isis distributed programming toolkit. The primary goal of the architecture is to make common group oriented abstractions robust in hostile settings, in order to facilitate the construction of high performance distributed applications that can tolerate both component failures and malicious attacks. These abstractions include process groups and causal group multicast. Moreover, a delegation and access control scheme is proposed for use in group oriented systems. The focus is the security architecture; particular cryptosystems and key exchange protocols are not emphasized

    Programming Language Abstractions for Modularly Verified Distributed Systems

    Get PDF
    Distributed systems are rarely developed as monolithic programs. Instead, like any software, these systems may consist of multiple program components, which are then compiled separately and linked together. Modern systems also incorporate various services interacting with each other and with client applications. However, state-of-the-art verification tools focus predominantly on verifying standalone, closed-world protocols or systems, thus failing to account for the compositional nature of distributed systems. For example, standalone verification has the drawback that when protocols and their optimized implementations evolve, one must re-verify the entire system from scratch, instead of leveraging compositionality to contain the reverification effort. In this paper, we focus on the challenge of modular verification of distributed systems with respect to high-level protocol invariants as well as for low-level implementation safety properties. We argue that the missing link between the two is a programming paradigm that would allow one to reason about both high-level distributed protocols and low-level implementation primitives in a single verification-friendly framework. Such a link would make it possible to reap the benefits from both the vast body of research in distributed computing, focused on modular protocol decomposition and consistency properties, as well as from the recent advances in program verification, enabling construction of provably correct systems implementations. To showcase the modular verification challenges, we present some typical scenarios of decomposition between a distributed protocol and its implementations. We then describe our ongoing research agenda, in which we are attempting to address the outlined problems by providing a typing discipline and a set of domain-specific primitives for specifying, implementing and verifying distributed systems. Our approach, mechanized within a proof assistant, provides the means of decomposition necessary for modular proofs about distributed protocols and systems

    Programming platform for distributed robotics: primitives and portability

    Get PDF
    The Stabilizing Robotics Language (StarL) programming framework aims to simplify development of distributed robotic applications by providing programming abstractions and building blocks for communication, motion control and coordination between robots. It has been used to develop applications such as formation control, automatic intersection protocol, and distributed collaborative search. In this thesis, we introduce the programming abstractions as StarL primitives that are platform independent and useful across hardware platforms, resulting in portability. We first introduce the primitives as building blocks to easily develop, simulate and debug distributed robotic applications in StarL. Then, we discuss the design of the StarL framework which enables us to achieve portability of robot programs across hardware platforms. Thus, the same application program, say, for formation control, can now be ported and deployed on multiple, heterogeneous robotic platforms. We evaluate the design of these new features by simulating several applications

    Asynchronous Execution of Python Code on Task Based Runtime Systems

    Get PDF
    Despite advancements in the areas of parallel and distributed computing, the complexity of programming on High Performance Computing (HPC) resources has deterred many domain experts, especially in the areas of machine learning and artificial intelligence (AI), from utilizing performance benefits of such systems. Researchers and scientists favor high-productivity languages to avoid the inconvenience of programming in low-level languages and costs of acquiring the necessary skills required for programming at this level. In recent years, Python, with the support of linear algebra libraries like NumPy, has gained popularity despite facing limitations which prevent this code from distributed runs. Here we present a solution which maintains both high level programming abstractions as well as parallel and distributed efficiency. Phylanx, is an asynchronous array processing toolkit which transforms Python and NumPy operations into code which can be executed in parallel on HPC resources by mapping Python and NumPy functions and variables into a dependency tree executed by HPX, a general purpose, parallel, task-based runtime system written in C++. Phylanx additionally provides introspection and visualization capabilities for debugging and performance analysis. We have tested the foundations of our approach by comparing our implementation of widely used machine learning algorithms to accepted NumPy standards

    Choral: Object-Oriented Choreographic Programming

    Full text link
    We present Choral, the first choreographic programming language based on mainstream abstractions. The key idea in Choral is a new notion of data type, which allows for expressing that data is distributed over different roles. We use this idea to reconstruct the paradigm of choreographic programming through object-oriented abstractions. Choreographies are classes, and instances of choreographies are objects with states and behaviours implemented collaboratively by roles. Choral comes with a compiler that, given a choreography, generates an implementation for each of its roles. These implementations are libraries in pure Java, whose types are under the control of the Choral programmer. Developers can then modularly compose these libraries in their own programs, in order to participate correctly in choreographies. Choral is the first incarnation of choreographic programming offering such modularity, which finally connects more than a decade of research on the paradigm to practical software development. The integration of choreographic and object-oriented programming yields other powerful advantages, where the features of one paradigm benefit the other in ways that go beyond the sum of the parts. The high-level abstractions and static checks from the world of choreographies can be used to write concurrent and distributed object-oriented software more concisely and correctly. We obtain a much more expressive choreographic language from object-oriented abstractions than in previous work. For example, object passing makes Choral the first higher-order choreographic programming language, whereby choreographies can be parameterised over other choreographies without any need for central coordination. Together with subtyping and generics, this allows Choral to elegantly support user-defined communication mechanisms and middleware

    Abstractions for Distributed Programming: Guests or Relatives?

    Get PDF
    What abstractions are useful for expressing distributed interaction? This question has constituted an active area of research in the last decades and several candidates have been proposed, including remote method invocation, tuple spaces and publish/subscribe. How should these abstractions be supported? Through a library or ``directly'' within a language? This important complementary question has sparked less enthousiasm. This paper contributes to addressing this question in the context of Java and the type-based publish/subscribe (TPS) abstraction, an object-oriented variant of the publish/subscribe paradigm. We compare our three implementations of TPS, namely in (1) an extension of Java we designed to inherently support TPS, (2) standard Java, and (3) Java augmented with genericity. Through our comparison, we identify some general purpose that features that an object-oriented language should have in order to enable a satisfactory library implementation of TPS. We (re-)insist here on the importance of providing both genericity and reflective features in the language, and point out the very fact that the way these features are currently supported might indeed enable satisfactory implementations of remote method invocations, yet is still insufficient for TPS and tuple spaces

    Functional programming abstractions for weakly consistent systems

    Get PDF
    In recent years, there has been a wide-spread adoption of both multicore and cloud computing. Traditionally, concurrent programmers have relied on the underlying system providing strong memory consistency, where there is a semblance of concurrent tasks operating over a shared global address space. However, providing scalable strong consistency guarantees as the scale of the system grows is an increasingly difficult endeavor. In a multicore setting, the increasing complexity and the lack of scalability of hardware mechanisms such as cache coherence deters scalable strong consistency. In geo-distributed compute clouds, the availability concerns in the presence of partial failures prohibit strong consistency. Hence, modern multicore and cloud computing platforms eschew strong consistency in favor of weakly consistent memory, where each task\u27s memory view is incomparable with the other tasks. As a result, programmers on these platforms must tackle the full complexity of concurrent programming for an asynchronous distributed system. ^ This dissertation argues that functional programming language abstractions can simplify scalable concurrent programming for weakly consistent systems. Functional programming espouses mutation-free programming, and rare mutations when present are explicit in their types. By controlling and explicitly reasoning about shared state mutations, functional abstractions simplify concurrent programming. Building upon this intuition, this dissertation presents three major contributions, each focused on addressing a particular challenge associated with weakly consistent loosely coupled systems. First, it describes A NERIS, a concurrent functional programming language and runtime for the Intel Single-chip Cloud Computer, and shows how to provide an efficient cache coherent virtual address space on top of a non cache coherent multicore architecture. Next, it describes RxCML, a distributed extension of MULTIMLTON and shows that, with the help of speculative execution, synchronous communication can be utilized as an efficient abstraction for programming asynchronous distributed systems. Finally, it presents QUELEA, a programming system for eventually consistent distributed stores, and shows that the choice of correct consistency level for replicated data type operations and transactions can be automated with the help of high-level declarative contracts

    A library for developing real-time and embedded applications in C

    Get PDF
    Next generation applications will demand more cost-effective programming abstractions to reduce increasing maintenance and development costs. In this context, the article explores the integration of an efficient programming language and high-level real-time programming abstractions. The resulting abstraction is called Embedded Cyber Physical C (ECP-C) and it is useful for designing real-time applications directly on C. The abstraction has its roots on the real-time Java: one of the most modern programming languages, which benefited from mature programming patterns previously developed for other languages. It also targets embedded processors running on limited hardware. ECP-C takes the programming abstractions described in real-time Java and reflects them into a C application system, providing extensions for multi-threading, resource sharing, memory management, external event, signaling, and memory access. It also reports on the performance results obtained in a set of infrastructures used to check ECP-C, providing clues on the overhead introduced by these mechanisms on limited infrastructures. (C) 2015 Elsevier B.V. All rights reserved.This work has been partially funded by Distributed Java Infrastructure for Real-Time Big-Data (CAS14/00118) and by eMadrid: Investigación y Desarrollo de tecnologías educativas en la Comunidad de Madrid (S2013/ICE-2715). This research was supported by the national project REM4VSS (TIN-2011-28339) and by European Union’s 7th Framework Programme Under Grant Agreement FP7-IC6-318763

    A Protocol for the Atomic Capture of Multiple Molecules at Large Scale

    Get PDF
    With the rise of service-oriented computing, applications are more and more based on coordination of autonomous services. Envisioned over largely distributed and highly dynamic platforms, expressing this coordination calls for alternative programming models. The chemical programming paradigm, which models applications as chemical solutions where molecules representing digital entities involved in the computation, react together to produce a result, has been recently shown to provide the needed abstractions for autonomic coordination of services. However, the execution of such programs over large scale platforms raises several problems hindering this paradigm to be actually leveraged. Among them, the atomic capture of molecules participating in concur- rent reactions is one of the most significant. In this paper, we propose a protocol for the atomic capture of these molecules distributed and evolving over a large scale platform. As the density of possible reactions is crucial for the liveness and efficiency of such a capture, the protocol proposed is made up of two sub-protocols, each of them aimed at addressing different levels of densities of potential reactions in the solution. While the decision to choose one or the other is local to each node participating in a program's execution, a global coherent behaviour is obtained. Proof of liveness, as well as intensive simulation results showing the efficiency and limited overhead of the protocol are given.Comment: 13th International Conference on Distributed Computing and Networking (2012
    • 

    corecore