3,057 research outputs found

    An Effective Fixpoint Semantics for Linear Logic Programs

    Full text link
    In this paper we investigate the theoretical foundation of a new bottom-up semantics for linear logic programs, and more precisely for the fragment of LinLog that consists of the language LO enriched with the constant 1. We use constraints to symbolically and finitely represent possibly infinite collections of provable goals. We define a fixpoint semantics based on a new operator in the style of Tp working over constraints. An application of the fixpoint operator can be computed algorithmically. As sufficient conditions for termination, we show that the fixpoint computation is guaranteed to converge for propositional LO. To our knowledge, this is the first attempt to define an effective fixpoint semantics for linear logic programs. As an application of our framework, we also present a formal investigation of the relations between LO and Disjunctive Logic Programming. Using an approach based on abstract interpretation, we show that DLP fixpoint semantics can be viewed as an abstraction of our semantics for LO. We prove that the resulting abstraction is correct and complete for an interesting class of LO programs encoding Petri Nets.Comment: 39 pages, 5 figures. To appear in Theory and Practice of Logic Programmin

    On Verifying Complex Properties using Symbolic Shape Analysis

    Get PDF
    One of the main challenges in the verification of software systems is the analysis of unbounded data structures with dynamic memory allocation, such as linked data structures and arrays. We describe Bohne, a new analysis for verifying data structures. Bohne verifies data structure operations and shows that 1) the operations preserve data structure invariants and 2) the operations satisfy their specifications expressed in terms of changes to the set of objects stored in the data structure. During the analysis, Bohne infers loop invariants in the form of disjunctions of universally quantified Boolean combinations of formulas. To synthesize loop invariants of this form, Bohne uses a combination of decision procedures for Monadic Second-Order Logic over trees, SMT-LIB decision procedures (currently CVC Lite), and an automated reasoner within the Isabelle interactive theorem prover. This architecture shows that synthesized loop invariants can serve as a useful communication mechanism between different decision procedures. Using Bohne, we have verified operations on data structures such as linked lists with iterators and back pointers, trees with and without parent pointers, two-level skip lists, array data structures, and sorted lists. We have deployed Bohne in the Hob and Jahob data structure analysis systems, enabling us to combine Bohne with analyses of data structure clients and apply it in the context of larger programs. This report describes the Bohne algorithm as well as techniques that Bohne uses to reduce the ammount of annotations and the running time of the analysis

    Expressiveness and Completeness in Abstraction

    Full text link
    We study two notions of expressiveness, which have appeared in abstraction theory for model checking, and find them incomparable in general. In particular, we show that according to the most widely used notion, the class of Kripke Modal Transition Systems is strictly less expressive than the class of Generalised Kripke Modal Transition Systems (a generalised variant of Kripke Modal Transition Systems equipped with hypertransitions). Furthermore, we investigate the ability of an abstraction framework to prove a formula with a finite abstract model, a property known as completeness. We address the issue of completeness from a general perspective: the way it depends on certain abstraction parameters, as well as its relationship with expressiveness.Comment: In Proceedings EXPRESS/SOS 2012, arXiv:1208.244

    An efficient, parametric fixpoint algorithm for analysis of java bytecode

    Get PDF
    Abstract interpretation has been widely used for the analysis of object-oriented languages and, in particular, Java source and bytecode. However, while most existing work deals with the problem of flnding expressive abstract domains that track accurately the characteristics of a particular concrete property, the underlying flxpoint algorithms have received comparatively less attention. In fact, many existing (abstract interpretation based—) flxpoint algorithms rely on relatively inefHcient techniques for solving inter-procedural caligraphs or are speciflc and tied to particular analyses. We also argüe that the design of an efficient fixpoint algorithm is pivotal to supporting the analysis of large programs. In this paper we introduce a novel algorithm for analysis of Java bytecode which includes a number of optimizations in order to reduce the number of iterations. The algorithm is parametric -in the sense that it is independent of the abstract domain used and it can be applied to different domains as "plug-ins"-, multivariant, and flow-sensitive. Also, is based on a program transformation, prior to the analysis, that results in a highly uniform representation of all the features in the language and therefore simplifies analysis. Detailed descriptions of decompilation solutions are given and discussed with an example. We also provide some performance data from a preliminary implementation of the analysis

    A Backward Analysis for Constraint Logic Programs

    Get PDF
    One recurring problem in program development is that of understanding how to re-use code developed by a third party. In the context of (constraint) logic programming, part of this problem reduces to figuring out how to query a program. If the logic program does not come with any documentation, then the programmer is forced to either experiment with queries in an ad hoc fashion or trace the control-flow of the program (backward) to infer the modes in which a predicate must be called so as to avoid an instantiation error. This paper presents an abstract interpretation scheme that automates the latter technique. The analysis presented in this paper can infer moding properties which if satisfied by the initial query, come with the guarantee that the program and query can never generate any moding or instantiation errors. Other applications of the analysis are discussed. The paper explains how abstract domains with certain computational properties (they condense) can be used to trace control-flow backward (right-to-left) to infer useful properties of initial queries. A correctness argument is presented and an implementation is reported.Comment: 32 page

    A Semantic Basis for Specialising Domain Constraints

    Get PDF
    This paper formalises an analysis of finite domain programs and the resultant program transformation. The analysis adds low valency (domain) constraints to clauses in order to reduce search. The technique is outlined with a worked example and then formalised using abstract interpretation. Correctness of the analysis and of the transformation is proved

    A theorem-proving approach to deciding properties of finite control agents

    Get PDF
    The report presents a decision procedure for assertions in an extension of the mu-calculus about finite-control pi-calculus agents. The procedure is based on the classical cut-free sequent calculus and associated techniques of automatic theorem proving

    A practical approach to the global analysis of CLP programs

    Get PDF
    This paper presents and illustrates with an example a practical approach to the dataflow analysis of programs written in constraint logic programming (CLP) languages using abstract interpretation. It is first argued that, from the framework point of view, it sufnces to propose relatively simple extensions of traditional analysis methods which have already been proved useful and practical and for which efncient fixpoint algorithms have been developed. This is shown by proposing a simple but quite general extensiĂłn of Bruynooghe's traditional framework to the analysis of CLP programs. In this extensiĂłn constraints are viewed not as "suspended goals" but rather as new information in the store, following the traditional view of CLP. Using this approach, and as an example of its use, a complete, constraint system independent, abstract analysis is presented for approximating definiteness information. The analysis is in fact of quite general applicability. It has been implemented and used in the analysis of CLP(R) and Prolog-III applications. Results from the implementation of this analysis are also presented
    • …
    corecore