335 research outputs found

    SIGMA: Scala Internal Domain-Specific Languages for Model Manipulations

    Get PDF
    International audienceModel manipulation environments automate model operations such as model consistency checking and model transformation. A number of external model manipulation Domain-Specific Languages (DSL) have been proposed, in particular for the Eclipse Modeling Framework (EMF). While their higher levels of abstraction result in gains in expressiveness over general-purpose languages, their limitations in versatility, performance, and tool support together with the need to learn new languages may significantly contribute to accidental complexities. In this paper, we present Sigma, a family of internal DSLs embedded in Scala for EMF model consistency checking, model-to-model and model-to-text transformations. It combines the benefits of external model manipulation DSLs with general-purpose programming taking full advantage of Scala versatility, performance and tool support. The DSLs are compared to the state-of-the-art Epsilon languages in non-trivial model manipulation tasks that resulted in 20% to 70% reduction in code size and significantly better performance

    A Property-Driven Approach to Formal Verification of Process Models

    Get PDF
    Enterprise Information Systems, 9th International Conference, ICEIS 2007, Funchal, Madeira, June 12-16, 2007, Revised Selected PapersInternational audienceMore and more, models, through Domain Specific Languages (DSL), tend to be the solution to define complex systems. Expressing properties specific to these metamodels, and checking them, appear as an urgent need. Until now, the only complete industrial solutions that are available consider structural properties such as the ones that could be expressed in OCL. There are although some attempts on behavioural properties for DSL. This paper addresses a method to specify and then check temporal properties over models. The case study is SimplePDL, a process metamodel. We propose a way to use a temporal extension of OCL, TOCL, to express properties. We specify a models transformation to Petri Nets and LTL formulae for both the process model and its associated temporal properties. We check these properties using a model checker and enrich the model with the analysis results. This work is a first step towards a generic framework to specify and effectively check temporal properties over arbitrary models

    Towards formal models and languages for verifiable Multi-Robot Systems

    Get PDF
    Incorrect operations of a Multi-Robot System (MRS) may not only lead to unsatisfactory results, but can also cause economic losses and threats to safety. These threats may not always be apparent, since they may arise as unforeseen consequences of the interactions between elements of the system. This call for tools and techniques that can help in providing guarantees about MRSs behaviour. We think that, whenever possible, these guarantees should be backed up by formal proofs to complement traditional approaches based on testing and simulation. We believe that tailored linguistic support to specify MRSs is a major step towards this goal. In particular, reducing the gap between typical features of an MRS and the level of abstraction of the linguistic primitives would simplify both the specification of these systems and the verification of their properties. In this work, we review different agent-oriented languages and their features; we then consider a selection of case studies of interest and implement them useing the surveyed languages. We also evaluate and compare effectiveness of the proposed solution, considering, in particular, easiness of expressing non-trivial behaviour.Comment: Changed formattin
    • …
    corecore