1,250 research outputs found

    Abstraction Refinement for Quantified Array Assertions

    Get PDF
    We present an abstraction refinement technique for the verification of universally quantified array assertions such as “all elements in the array are sorted”. Our technique can be seamlessly combined with existing software model checking algorithms. We implemented our technique in the ACSAR software model checker and successfully verified quantified array assertions for both text book examples and real-life examples taken from the Linux operating system kernel

    Proving Safety with Trace Automata and Bounded Model Checking

    Full text link
    Loop under-approximation is a technique that enriches C programs with additional branches that represent the effect of a (limited) range of loop iterations. While this technique can speed up the detection of bugs significantly, it introduces redundant execution traces which may complicate the verification of the program. This holds particularly true for verification tools based on Bounded Model Checking, which incorporate simplistic heuristics to determine whether all feasible iterations of a loop have been considered. We present a technique that uses \emph{trace automata} to eliminate redundant executions after performing loop acceleration. The method reduces the diameter of the program under analysis, which is in certain cases sufficient to allow a safety proof using Bounded Model Checking. Our transformation is precise---it does not introduce false positives, nor does it mask any errors. We have implemented the analysis as a source-to-source transformation, and present experimental results showing the applicability of the technique

    Dynamic Logic for an Intermediate Language: Verification, Interaction and Refinement

    Get PDF
    This thesis is about ensuring that software behaves as it is supposed to behave. More precisely, it is concerned with the deductive verification of the compliance of software implementations with their formal specification. Two successful ideas in program verification are integrated into a new approach: dynamic logic and intermediate verification language. The well-established technique of refinement is used to decompose the difficult task of program verification into two easier tasks

    Specifying and Verifying Concurrent Algorithms with Histories and Subjectivity

    Full text link
    We present a lightweight approach to Hoare-style specifications for fine-grained concurrency, based on a notion of time-stamped histories that abstractly capture atomic changes in the program state. Our key observation is that histories form a partial commutative monoid, a structure fundamental for representation of concurrent resources. This insight provides us with a unifying mechanism that allows us to treat histories just like heaps in separation logic. For example, both are subject to the same assertion logic and inference rules (e.g., the frame rule). Moreover, the notion of ownership transfer, which usually applies to heaps, has an equivalent in histories. It can be used to formally represent helping---an important design pattern for concurrent algorithms whereby one thread can execute code on behalf of another. Specifications in terms of histories naturally abstract granularity, in the sense that sophisticated fine-grained algorithms can be given the same specifications as their simplified coarse-grained counterparts, making them equally convenient for client-side reasoning. We illustrate our approach on a number of examples and validate all of them in Coq.Comment: 17 page

    Preliminary Design of JML: A Behavioral Interface Specification Language for Java

    Get PDF
    JML is a behavioral interface specification language tailored to Java(TM). Besides pre- and postconditions, it also allows assertions to be intermixed with Java code; these aid verification and debugging. JML is designed to be used by working software engineers; to do this it follows Eiffel in using Java expressions in assertions. JML combines this idea from Eiffel with the model-based approach to specifications, typified by VDM and Larch, which results in greater expressiveness. Other expressiveness advantages over Eiffel include quantifiers, specification-only variables, and frame conditions. This paper discusses the goals of JML, the overall approach, and describes the basic features of the language through examples. It is intended for readers who have some familiarity with both Java and behavioral specification using pre- and postconditions

    Thread-local, step-local proof obligations for refinement of state-based concurrent systems

    Get PDF
    This paper presents a proof technique for proving refinements for general state-based models of concurrent systems that reduces proving forward simulations to thread-local, step-local proof obligations. Instances of this proof technique should be applicable to systems specified with ASM rules, B events, or Z operations. To exemplify the proof technique, we demonstrate it with a simple case study that verifies linearizability of a lock-free implementation of concurrent hash sets by showing that it refines an abstract concurrent system with atomic operations. Our theorem prover KIV translates programs to a set of transition rules and generates proof obligations according to the technique
    • …
    corecore