3 research outputs found

    A Collection of Constraint Programming Models for the Three-Dimensional Stable Matching Problem with Cyclic Preferences

    Get PDF
    We introduce five constraint models for the 3-dimensional stable matching problem with cyclic preferences and study their relative performances under diverse configurations. While several constraint models have been proposed for variants of the two-dimensional stable matching problem, we are the first to present constraint models for a higher number of dimensions. We show for all five models how to capture two different stability notions, namely weak and strong stability. Additionally, we translate some well-known fairness notions (i.e. sex-equal, minimum regret, egalitarian) into 3-dimensional matchings, and present how to capture them in each model. Our tests cover dozens of problem sizes and four different instance generation methods. We explore two levels of commitment in our models: one where we have an individual variable for each agent (individual commitment), and another one where the determination of a variable involves pairing the three agents at once (group commitment). Our experiments show that the suitability of the commitment depends on the type of stability we are dealing with. Our experiments not only led us to discover dependencies between the type of stability and the instance generation method, but also brought light to the role that learning and restarts can play in solving this kind of problems

    Revisiting two-sided stability constraints

    Get PDF
    We show that previous filtering propositions on two-sided stability problems do not enforce arc consistency (AC), however they maintain Bound(D) Consistency (BC(D)). We propose an optimal algorithm achieving BC(D) with O(L) time complexity where L is the length of the preference lists. We also show an adaptation of this filtering approach to achieve AC. Next, we report the first polynomial time algorithm for solving the hospital/resident problem with forced and forbidden pairs. Furthermore, we show that the particular case of this problem for stable marriage can be solved in O(n2) which improves the previously best complexity by a factor of n2. Finally, we present a comprehensive set of experiments to evaluate the filtering propositions

    On the connection of probabilistic model checking, planning, and learning for system verification

    Get PDF
    This thesis presents approaches using techniques from the model checking, planning, and learning community to make systems more reliable and perspicuous. First, two heuristic search and dynamic programming algorithms are adapted to be able to check extremal reachability probabilities, expected accumulated rewards, and their bounded versions, on general Markov decision processes (MDPs). Thereby, the problem space originally solvable by these algorithms is enlarged considerably. Correctness and optimality proofs for the adapted algorithms are given, and in a comprehensive case study on established benchmarks it is shown that the implementation, called Modysh, is competitive with state-of-the-art model checkers and even outperforms them on very large state spaces. Second, Deep Statistical Model Checking (DSMC) is introduced, usable for quality assessment and learning pipeline analysis of systems incorporating trained decision-making agents, like neural networks (NNs). The idea of DSMC is to use statistical model checking to assess NNs resolving nondeterminism in systems modeled as MDPs. The versatility of DSMC is exemplified in a number of case studies on Racetrack, an MDP benchmark designed for this purpose, flexibly modeling the autonomous driving challenge. In a comprehensive scalability study it is demonstrated that DSMC is a lightweight technique tackling the complexity of NN analysis in combination with the state space explosion problem.Diese Arbeit präsentiert Ansätze, die Techniken aus dem Model Checking, Planning und Learning Bereich verwenden, um Systeme verlässlicher und klarer verständlich zu machen. Zuerst werden zwei Algorithmen für heuristische Suche und dynamisches Programmieren angepasst, um Extremwerte für Erreichbarkeitswahrscheinlichkeiten, Erwartungswerte für Kosten und beschränkte Varianten davon, auf generellen Markov Entscheidungsprozessen (MDPs) zu untersuchen. Damit wird der Problemraum, der ursprünglich mit diesen Algorithmen gelöst wurde, deutlich erweitert. Korrektheits- und Optimalitätsbeweise für die angepassten Algorithmen werden gegeben und in einer umfassenden Fallstudie wird gezeigt, dass die Implementierung, namens Modysh, konkurrenzfähig mit den modernsten Model Checkern ist und deren Leistung auf sehr großen Zustandsräumen sogar übertrifft. Als Zweites wird Deep Statistical Model Checking (DSMC) für die Qualitätsbewertung und Lernanalyse von Systemen mit integrierten trainierten Entscheidungsgenten, wie z.B. neuronalen Netzen (NN), eingeführt. Die Idee von DSMC ist es, statistisches Model Checking zur Bewertung von NNs zu nutzen, die Nichtdeterminismus in Systemen, die als MDPs modelliert sind, auflösen. Die Vielseitigkeit des Ansatzes wird in mehreren Fallbeispielen auf Racetrack gezeigt, einer MDP Benchmark, die zu diesem Zweck entwickelt wurde und die Herausforderung des autonomen Fahrens flexibel modelliert. In einer umfassenden Skalierbarkeitsstudie wird demonstriert, dass DSMC eine leichtgewichtige Technik ist, die die Komplexität der NN-Analyse in Kombination mit dem State Space Explosion Problem bewältigt
    corecore