215 research outputs found

    Memoization in Constraint Logic Programming

    Full text link
    This paper shows how to apply memoization (caching of subgoals and associated answer substitutions) in a constraint logic programming setting. The research is is motivated by the desire to apply constraint logic programming (CLP) to problems in natural language processing that involve (constraint) interleaving or coroutining, such as GB and HPSG parsing.Comment: 11 page

    Query Evaluation in Recursive Databases

    Get PDF

    Query Evaluation in Deductive Databases

    Get PDF
    It is desirable to answer queries posed to deductive databases by computing fixpoints because such computations are directly amenable to set-oriented fact processing. However, the classical fixpoint procedures based on bottom-up processing — the naive and semi-naive methods — are rather primitive and often inefficient. In this article, we rely on bottom-up meta-interpretation for formalizing a new fixpoint procedure that performs a different kind of reasoning: We specify a top-down query answering method, which we call the Backward Fixpoint Procedure. Then, we reconsider query evaluation methods for recursive databases. First, we show that the methods based on rewriting on the one hand, and the methods based on resolution on the other hand, implement the Backward Fixpoint Procedure. Second, we interpret the rewritings of the Alexander and Magic Set methods as specializations of the Backward Fixpoint Procedure. Finally, we argue that such a rewriting is also needed in a database context for implementing efficiently the resolution-based methods. Thus, the methods based on rewriting and the methods based on resolution implement the same top-down evaluation of the original database rules by means of auxiliary rules processed bottom-up

    Parameter Learning of Logic Programs for Symbolic-Statistical Modeling

    Full text link
    We propose a logical/mathematical framework for statistical parameter learning of parameterized logic programs, i.e. definite clause programs containing probabilistic facts with a parameterized distribution. It extends the traditional least Herbrand model semantics in logic programming to distribution semantics, possible world semantics with a probability distribution which is unconditionally applicable to arbitrary logic programs including ones for HMMs, PCFGs and Bayesian networks. We also propose a new EM algorithm, the graphical EM algorithm, that runs for a class of parameterized logic programs representing sequential decision processes where each decision is exclusive and independent. It runs on a new data structure called support graphs describing the logical relationship between observations and their explanations, and learns parameters by computing inside and outside probability generalized for logic programs. The complexity analysis shows that when combined with OLDT search for all explanations for observations, the graphical EM algorithm, despite its generality, has the same time complexity as existing EM algorithms, i.e. the Baum-Welch algorithm for HMMs, the Inside-Outside algorithm for PCFGs, and the one for singly connected Bayesian networks that have been developed independently in each research field. Learning experiments with PCFGs using two corpora of moderate size indicate that the graphical EM algorithm can significantly outperform the Inside-Outside algorithm

    Treating Coordination with Datalog Grammars

    Full text link
    In previous work we studied a new type of DCGs, Datalog grammars, which are inspired on database theory. Their efficiency was shown to be better than that of their DCG counterparts under (terminating) OLDT-resolution. In this article we motivate a variant of Datalog grammars which allows us a meta-grammatical treatment of coordination. This treatment improves in some respects over previous work on coordination in logic grammars, although more research is needed for testing it in other respects

    Upside-down Deduction

    Get PDF
    Over the recent years, several proposals were made to enhance database systems with automated reasoning. In this article we analyze two such enhancements based on meta-interpretation. We consider on the one hand the theorem prover Satchmo, on the other hand the Alexander and Magic Set methods. Although they achieve different goals and are based on distinct reasoning paradigms, Satchmo and the Alexander or Magic Set methods can be similarly described by upside-down meta-interpreters, i.e., meta-interpreters implementing one reasoning principle in terms of the other. Upside-down meta-interpretation gives rise to simple and efficient implementations, but has not been investigated in the past. This article is devoted to studying this technique. We show that it permits one to inherit a search strategy from an inference engine, instead of implementing it, and to combine bottom-up and top-down reasoning. These properties yield an explanation for the efficiency of Satchmo and a justification for the unconventional approach to top-down reasoning of the Alexander and Magic Set methods
    • …
    corecore