156 research outputs found

    Tidal dwarf galaxies as a test of fundamental physics

    Full text link
    Within the cold dark matter (CDM) framework tidal dwarf galaxies (TDGs) cannot contain dark matter, so the recent results by Bournaud et al. (2007) that 3 rotating TDGs do show significant evidence for being dark matter dominated is inconsistent with the current concordance cosmological theory unless yet another dark matter component is postulated. We confirm that the TDG rotation curves are consistent with Newtonian dynamics only if either an additional dark matter component is postulated, or if all 3 TDGs happen to be viewed nearly edge-on, which is unlikely given the geometry of the tidal debris. We also find that the observed rotation curves are very naturally explained without any free parameters within the modified Newtonian dynamics (MOND) framework if inclinations are adopted as derived by Bournaud et al. We explore different inclination angles and two different assumptions about the external field effect. The results do not change significantly, and we conclude therefore that Newtonian dynamics has severe problems while MOND does exceedingly well in explaining the observed rotation curves of the 3 TDGs studied by Bournaud et al.Comment: Accepted for publication in A&A Letters, 5 pages, 3 figure

    Reproducing properties of MW dSphs as descendants of DM-free TDGs

    Full text link
    The Milky Way (MW) dwarf spheroidal (dSph) satellites are known to be the most dark-matter (DM) dominated galaxies with estimates of dark to baryonic matter reaching even above one hundred. It comes from the assumption that dwarfs are dynamically supported by their observed velocity dispersions. However their spatial distributions around the MW is not at random and this could challenge their origin, previously assumed to be residues of primordial galaxies accreted by the MW potential. Here we show that alternatively, dSphs could be the residue of tidal dwarf galaxies (TDGs), which would have interacted with the Galactic hot gaseous halo and disk. TDGs are gas-rich and have been formed in a tidal tail produced during an ancient merger event at the M31 location, and expelled towards the MW. Our simulations show that low-mass TDGs are fragile to an interaction with the MW disk and halo hot gas. During the interaction, their stellar content is progressively driven out of equilibrium and strongly expands, leading to low surface brightness feature and mimicking high dynamical M/L ratios. Our modeling can reproduce the properties, including the kinematics, of classical MW dwarfs within the mass range of the Magellanic Clouds to Draco. An ancient gas-rich merger at the M31 location could then challenge the currently assumed high content of dark matter in dwarf galaxies. We propose a simple observational test with the coming GAIA mission, to follow their expected stellar expansion, which should not be observed within the current theoretical framework.Comment: 17 pages, 11 figures, accepted by the Monthly Notices of the Royal Astronomical Society (MNRAS

    The frequency and properties of young tidal dwarf galaxies in nearby gas-rich groups

    Full text link
    We present high-resolution Giant Metrewave Radio Telescope (GMRT) HI observations and deep Canada-France-Hawaii Telescope (CFHT) optical imaging of two galaxy groups: NGC 4725/47 and NGC 3166/9. These data are part of a multi-wavelength unbiased survey of the gas-rich dwarf galaxy populations in three nearby interacting galaxy groups. The NGC 4725/47 group hosts two tidal knots and one dIrr. Both tidal knots are located within a prominent HI tidal tail, appear to have sufficient mass (M_gas~10^8 M_sol) to evolve into long-lived tidal dwarf galaxies (TDGs) and are fairly young in age. The NGC 3166/9 group contains a TDG candidate, AGC 208457, at least three dIrrs and four HI knots. Deep CFHT imaging confirms that the optical component of AGC 208457 is bluer -- with a 0.28 mag g-r colour -- and a few Gyr younger than its purported parent galaxies. Combining the results for these groups with those from the NGC 871/6/7 group reported earlier, we find that the HI properties, estimated stellar ages and baryonic content of the gas-rich dwarfs clearly distinguish tidal features from their classical counterparts. We optimistically identify four potentially long-lived tidal objects associated to three separate pairs of interacting galaxies, implying that TDGs are not readily produced during interaction events as suggested by some recent simulations. The tidal objects examined in this survey also appear to have a wider variety of properties than TDGs of similar mass formed in current simulations of interacting galaxies, which could be the result of pre- or post-formation environmental influences.Comment: 18 pages, 14 figures, accepted for publication in MNRA

    The vast thin plane of M31 co-rotating dwarfs: an additional fossil signature of the M31 merger and of its considerable impact in the whole Local Group

    Full text link
    The recent discovery by Ibata et al. (2013) of a vast thin disk of satellites (VTDS) around M31 offers a new challenge for the understanding of the Local Group properties. This comes in addition to the unexpected proximity of the Magellanic Clouds (MCs) to the Milky Way (MW), and to another vast polar structure (VPOS), which is almost perpendicular to our Galaxy disk. We find that the VTDS plane is coinciding with several stellar, tidally-induced streams in the outskirts of M31, and, that its velocity distribution is consistent with that of the Giant Stream (GS). This is suggestive of a common physical mechanism, likely linked to merger tidal interactions, knowing that a similar argument may apply to the VPOS at the MW location. Furthermore, the VTDS is pointing towards the MW, being almost perpendicular to the MW disk, as the VPOS is. We compare these properties to the modelling of M31 as an ancient, gas-rich major merger, which has been successfully used to predict the M31 substructures and the GS origin. We find that without fine tuning, the induced tidal tails are lying in the VTDS plane, providing a single and common origin for many stellar streams and for the vast stellar structures surrounding both the MW and M31. The model also reproduces quite accurately positions and velocities of the VTDS dSphs. Our conjecture leads to a novel interpretation of the Local Group past history, as a gigantic tidal tail due to the M31 ancient merger is expected to send material towards the MW, including the MCs. Such a link between M31 and the MW is expected to be quite exceptional, though it may be in qualitative agreement with the reported rareness of MW-MCs systems in nearby galaxies.Comment: Accepted for publication in MNRAS, 8 pages, 3 figure

    The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the Milky Way

    Full text link
    It has been known for a long time that the satellite galaxies of the Milky Way (MW) show a significant amount of phase-space correlation, they are distributed in a highly inclined Disc of Satellites (DoS). We have extended the previous studies on the DoS by analysing for the first time the orientations of streams of stars and gas, and the distributions of globular clusters within the halo of the MW. It is shown that the spatial distribution of MW globular clusters classified as young halo clusters (YH GC) is very similar to the DoS, while 7 of the 14 analysed streams align with the DoS. The probability to find the observed clustering of streams is only 0.3 per cent when assuming isotropy. The MW thus is surrounded by a vast polar structure (VPOS) of subsystems (satellite galaxies, globular clusters and streams), spreading from Galactocentric distances as small as 10 kpc out to 250 kpc. These findings demonstrate that a near-isotropic infall of cosmological sub-structure components onto the MW is essentially ruled out because a large number of infalling objects would have had to be highly correlated, to a degree not natural for dark matter sub-structures. The majority of satellites, streams and YH GCs had to be formed as a correlated population. This is possible in tidal tails consisting of material expelled from interacting galaxies. We discuss the tidal scenario for the formation of the VPOS, including successes and possible challenges. The potential consequences of the MW satellites being tidal dwarf galaxies are severe. If all the satellite galaxies and YH GCs have been formed in an encounter between the young MW and another gas-rich galaxy about 10-11 Gyr ago, then the MW does not have any luminous dark-matter substructures and the missing satellites problem becomes a catastrophic failure of the standard cosmological model.Comment: 21 pages, 8 figures, 2 tables. Accepted for publication in MNRAS. An animation of Figure 5 can be found at http://youtu.be/nUwxv-WGfH

    The orbital poles of Milky Way satellite galaxies: a rotationally supported disc-of-satellites

    Full text link
    Available proper motion measurements of Milky Way (MW) satellite galaxies are used to calculate their orbital poles and projected uncertainties. These are compared to a set of recent cold dark-matter (CDM) simulations, tailored specifically to solve the MW satellite problem. We show that the CDM satellite orbital poles are fully consistent with being drawn from a random distribution, while the MW satellite orbital poles indicate that the disc-of-satellites of the Milky Way is rotationally supported. Furthermore, the bootstrapping analysis of the spatial distribution of theoretical CDM satellites also shows that they are consistent with being randomly drawn. The theoretical CDM satellite population thus shows a significantly different orbital and spatial distribution than the MW satellites, most probably indicating that the majority of the latter are of tidal origin rather than being DM dominated sub-structures. A statistic is presented that can be used to test a possible correlation of satellite galaxy orbits with their spatial distribution.Comment: Accepted for publication in Ap

    Candidate Tidal Dwarf Galaxies in the Compact Group CG J1720-67.8

    Get PDF
    This is the second part of a detailed study of the ultracompact group CG J1720-67.8: in the first part we have focused the attention on the three main galaxies of the group and we have identified a number of candidate tidal dwarf galaxies (TDGs). Here we concentrate on these candidate TDGs. Absolute photometry of these objects in BVRJHKs bands confirms their relatively blue colors, as we already expected from the inspection of optical and near-infrared color maps and from the presence of emission-lines in the optical spectra. The physical conditions in such candidate TDGs are investigated through the application of photoionization models, while the optical colors are compared with grids of spectrophotometric evolutionary synthesis models from the literature. Although from our data self-gravitation cannot be proved for these objects, their general properties are consistent with those of other TDG candidates. Additionally we present the photometry of a few ``knots'' detected in the immediate surroundings of CG J1720-67.8 and consider the possibility that these objects might belong to a dwarf population associated with the compact group.Comment: Accepted for publication in the Astrophysical Journa
    corecore