184 research outputs found

    Abstract Diagrammatic Reasoning with Multiplex Graph Networks

    Get PDF
    Abstract reasoning, particularly in the visual domain, is a complex human ability, but it remains a challenging problem for artificial neural learning systems. In this work we propose MXGNet, a multilayer graph neural network for multi-panel diagrammatic reasoning tasks. MXGNet combines three powerful concepts, namely, object-level representation, graph neural networks and multiplex graphs, for solving visual reasoning tasks. MXGNet first extracts object-level representations for each element in all panels of the diagrams, and then forms a multi-layer multiplex graph capturing multiple relations between objects across different diagram panels. MXGNet summarises the multiple graphs extracted from the diagrams of the task, and uses this summarisation to pick the most probable answer from the given candidates. We have tested MXGNet on two types of diagrammatic reasoning tasks, namely Diagram Syllogisms and Raven Progressive Matrices (RPM). For an Euler Diagram Syllogism task MXGNet achieves state-of-the-art accuracy of 99.8%. For PGM and RAVEN, two comprehensive datasets for RPM reasoning, MXGNet outperforms the state-of-the-art models by a considerable margin

    Extrapolatable Relational Reasoning With Comparators in Low-Dimensional Manifolds

    Get PDF
    While modern deep neural architectures generalise well when test data is sampled from the same distribution as training data, they fail badly for cases when the test data distribution differs from the training distribution even along a few dimensions. This lack of out-of-distribution generalisation is increasingly manifested when the tasks become more abstract and complex, such as in relational reasoning. In this paper we propose a neuroscience-inspired inductive-biased module that can be readily amalgamated with current neural network architectures to improve out-of-distribution (o.o.d) generalisation performance on relational reasoning tasks. This module learns to project high-dimensional object representations to low-dimensional manifolds for more efficient and generalisable relational comparisons. We show that neural nets with this inductive bias achieve considerably better o.o.d generalisation performance for a range of relational reasoning tasks. We finally analyse the proposed inductive bias module to understand the importance of lower dimension projection, and propose an augmentation to the algorithmic alignment theory to better measure algorithmic alignment with generalisation

    Topological Deep Learning: Going Beyond Graph Data

    Full text link
    Topological deep learning is a rapidly growing field that pertains to the development of deep learning models for data supported on topological domains such as simplicial complexes, cell complexes, and hypergraphs, which generalize many domains encountered in scientific computations. In this paper, we present a unifying deep learning framework built upon a richer data structure that includes widely adopted topological domains. Specifically, we first introduce combinatorial complexes, a novel type of topological domain. Combinatorial complexes can be seen as generalizations of graphs that maintain certain desirable properties. Similar to hypergraphs, combinatorial complexes impose no constraints on the set of relations. In addition, combinatorial complexes permit the construction of hierarchical higher-order relations, analogous to those found in simplicial and cell complexes. Thus, combinatorial complexes generalize and combine useful traits of both hypergraphs and cell complexes, which have emerged as two promising abstractions that facilitate the generalization of graph neural networks to topological spaces. Second, building upon combinatorial complexes and their rich combinatorial and algebraic structure, we develop a general class of message-passing combinatorial complex neural networks (CCNNs), focusing primarily on attention-based CCNNs. We characterize permutation and orientation equivariances of CCNNs, and discuss pooling and unpooling operations within CCNNs in detail. Third, we evaluate the performance of CCNNs on tasks related to mesh shape analysis and graph learning. Our experiments demonstrate that CCNNs have competitive performance as compared to state-of-the-art deep learning models specifically tailored to the same tasks. Our findings demonstrate the advantages of incorporating higher-order relations into deep learning models in different applications

    Analysis and Visualisation of Edge Entanglement in Multiplex Networks

    Get PDF
    Cette thèse présente une nouvelle méthodologie pour analyser des réseaux. Nous développons l'intrication d'un réseau multiplex, qui se matérialise sous forme d'une mesure d'intensité et d'homogénéité, et d'une abstraction, le réseau d'interaction des catalyseurs, auxquels sont associés des indices d'intrication. Nous présentons ensuite la mise en place d'outils spécifiques pour l'analyse visuelle des réseaux complexes qui tirent profit de cette méthodologie. Ces outils présente une vue double de deux réseaux,qui inclue une un algorithme de dessin, une interaction associant brossage d'une sélection et de multiples liens pré-attentifs. Nous terminons ce document par la présentation détaillée d'applications dans de multiples domaines.When it comes to comprehension of complex phenomena, humans need to understand what interactions lie within them.These interactions are often captured with complex networks. However, the interaction pluralism is often shallowed by traditional network models. We propose a new way to look at these phenomena through the lens of multiplex networks, in which catalysts are drivers of the interaction through substrates. To study the entanglement of a multiplex network is to study how edges intertwine, in other words, how catalysts interact. Our entanglement analysis results in a full set of new objects which completes traditional network approaches: the entanglement homogeneity and intensity of the multiplex network, and the catalyst interaction network, with for each catalyst, an entanglement index. These objects are very suitable for embedment in a visual analytics framework, to enable comprehension of a complex structure. We thus propose of visual setting with coordinated multiple views. We take advantage of mental mapping and visual linking to present simultaneous information of a multiplex network at three different levels of abstraction. We complete brushing and linking with a leapfrog interaction that mimics the back-and-forth process involved in users' comprehension. The method is validated and enriched through multiple applications including assessing group cohesion in document collections, and identification of particular associations in social networks.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF
    • …
    corecore