2,196 research outputs found

    Abstract Datatypes for Real Numbers in Type Theory

    Get PDF
    Abstract. We propose an abstract datatype for a closed interval of real numbers to type theory, providing a representation-independent approach to programming with real numbers. The abstract datatype requires only function types and a natural numbers type for its formulation, and so can be added to any type theory that extends Gödel’s System datatype is equivalent in power to programming intensionally with representations of real numbers. We also consider representing arbitrary real numbers using a mantissa-exponent representation in which the mantissa is taken from the abstract interval.

    On Counterexample Guided Quantifier Instantiation for Synthesis in CVC4

    Full text link
    We introduce the first program synthesis engine implemented inside an SMT solver. We present an approach that extracts solution functions from unsatisfiability proofs of the negated form of synthesis conjectures. We also discuss novel counterexample-guided techniques for quantifier instantiation that we use to make finding such proofs practically feasible. A particularly important class of specifications are single-invocation properties, for which we present a dedicated algorithm. To support syntax restrictions on generated solutions, our approach can transform a solution found without restrictions into the desired syntactic form. As an alternative, we show how to use evaluation function axioms to embed syntactic restrictions into constraints over algebraic datatypes, and then use an algebraic datatype decision procedure to drive synthesis. Our experimental evaluation on syntax-guided synthesis benchmarks shows that our implementation in the CVC4 SMT solver is competitive with state-of-the-art tools for synthesis

    Impossibility of Gathering, a Certification

    Get PDF
    Recent advances in Distributed Computing highlight models and algorithms for autonomous swarms of mobile robots that self-organise and cooperate to solve global objectives. The overwhelming majority of works so far considers handmade algorithms and proofs of correctness. This paper builds upon a previously proposed formal framework to certify the correctness of impossibility results regarding distributed algorithms that are dedicated to autonomous mobile robots evolving in a continuous space. As a case study, we consider the problem of gathering all robots at a particular location, not known beforehand. A fundamental (but not yet formally certified) result, due to Suzuki and Yamashita, states that this simple task is impossible for two robots executing deterministic code and initially located at distinct positions. Not only do we obtain a certified proof of the original impossibility result, we also get the more general impossibility of gathering with an even number of robots, when any two robots are possibly initially at the same exact location.Comment: 10

    A Convenient Category of Domains

    Get PDF
    We motivate and define a category of "topological domains", whose objects are certain topological spaces, generalising the usual omegaomega-continuous dcppos of domain theory. Our category supports all the standard constructions of domain theory, including the solution of recursive domain equations. It also supports the construction of free algebras for (in)equational theories, provides a model of parametric polymorphism, and can be used as the basis for a theory of computability. This answers a question of Gordon Plotkin, who asked whether it was possible to construct a category of domains combining such properties

    The Vampire and the FOOL

    Full text link
    This paper presents new features recently implemented in the theorem prover Vampire, namely support for first-order logic with a first class boolean sort (FOOL) and polymorphic arrays. In addition to having a first class boolean sort, FOOL also contains if-then-else and let-in expressions. We argue that presented extensions facilitate reasoning-based program analysis, both by increasing the expressivity of first-order reasoners and by gains in efficiency

    The Common HOL Platform

    Full text link
    The Common HOL project aims to facilitate porting source code and proofs between members of the HOL family of theorem provers. At the heart of the project is the Common HOL Platform, which defines a standard HOL theory and API that aims to be compatible with all HOL systems. So far, HOL Light and hol90 have been adapted for conformance, and HOL Zero was originally developed to conform. In this paper we provide motivation for a platform, give an overview of the Common HOL Platform's theory and API components, and show how to adapt legacy systems. We also report on the platform's successful application in the hand-translation of a few thousand lines of source code from HOL Light to HOL Zero.Comment: In Proceedings PxTP 2015, arXiv:1507.0837
    corecore