241 research outputs found

    Kernels in edge-coloured orientations of nearly complete graphs

    Get PDF
    AbstractWe call the digraph D an orientation of a graph G if D is obtained from G by the orientation of each edge of G in exactly one of the two possible directions. The digraph D is an m-coloured digraph if the arcs of D are coloured with m-colours.Let D be an m-coloured digraph. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike.A set N⊆V(D) is said to be a kernel by monochromatic paths if it satisfies the two following conditions: (i) for every pair of different vertices u,v∈N there is no monochromatic directed path between them and (ii) for every vertex x∈V(D)-N there is a vertex y∈N such that there is an xy-monochromatic directed path.In this paper we obtain sufficient conditions for an m-coloured orientation of a graph obtained from Kn by deletion of the arcs of K1,r (0⩽r⩽n-1) to have a kernel by monochromatic

    Classes of Intersection Digraphs with Good Algorithmic Properties

    Get PDF
    While intersection graphs play a central role in the algorithmic analysis of hard problems on undirected graphs, the role of intersection digraphs in algorithms is much less understood. We present several contributions towards a better understanding of the algorithmic treatment of intersection digraphs. First, we introduce natural classes of intersection digraphs that generalize several classes studied in the literature. Second, we define the directed locally checkable vertex (DLCV) problems, which capture many well-studied problems on digraphs such as (Independent) Dominating Set, Kernel, and H-Homomorphism. Third, we give a new width measure of digraphs, bi-mim-width, and show that the DLCV problems are polynomial-time solvable when we are provided a decomposition of small bi-mim-width. Fourth, we show that several classes of intersection digraphs have bounded bi-mim-width, implying that we can solve all DLCV problems on these classes in polynomial time given an intersection representation of the input digraph. We identify reflexivity as a useful condition to obtain intersection digraph classes of bounded bi-mim-width, and therefore to obtain positive algorithmic results

    Algebra and the Complexity of Digraph CSPs: a Survey

    Get PDF
    We present a brief survey of some of the key results on the interplay between algebraic and graph-theoretic methods in the study of the complexity of digraph-based constraint satisfaction problems

    Master index: volumes 31–40

    Get PDF
    • …
    corecore